1
|
Chen X, Liu X, Zhong X, Ren J, Wang H, Song X, Fan C, Xu J, Li C, Wang L, Hu Q, Lv J, Xing Y, Gao L, Xu H. Lifespan trajectories of the morphology and tractography of the corpus callosum: A 5.0 T MRI study. Brain Res 2025; 1850:149413. [PMID: 39719192 DOI: 10.1016/j.brainres.2024.149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
The corpus callosum (CC) is the largest white matter fiber bundle connecting the two hemispheres, facilitating interhemispheric integration and hemispheric specialization. Neuroimaging studies have identified the CC as a marker for aging and various neuropsychiatric disorders. However, studies focusing on high-resolution imaging and detailed lifespan characterizations of CC morphology and connectivity are still limited, highlighting the need for further investigation.Utilizing the high-resolution brain imaging capabilities of 5.0 T ultra-high-field MRI, we collected lifespan data from 266 healthy adults aged 18-89. We segmented and measured the midsagittal area, circularity, thickness, and tractography of the CC using both linear regression and nonlinear fitting models. Our analysis revealed that, despite regional variations, these measures generally exhibited a brief initial increase, likely reflecting developmental maturation, followed by a rapid decline associated with aging-related degeneration. Coupling analysis further indicated that the positive correlation between CC morphology and tractography becomes stronger with increasing age, suggesting age-related structural-functional coupling. External validation and correlation with cognitive-behavioral tests showed that CC subregions with significant age-related changes predominantly involve areas connecting the frontal and parietal networks, particularly those associated with executive function and attentional control. These findings provide new insights into the lifespan evolution of CC morphology and tractography, as well as their degeneration associated with cognitive processing and sensory-motor integration.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xitong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaopeng Song
- Shanghai United Imaging Healthcare Co Ltd, Shanghai 201815, China
| | - Chenhong Fan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jia Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chunyu Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liang Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiang Hu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jinfeng Lv
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yaowen Xing
- Shanghai United Imaging Healthcare Co Ltd, Shanghai 201815, China.
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Wang J, Song L, Tian B, Yang L, Gu X, Chen X, Gao L, Jiang L. Static and dynamic brain functional connectivity patterns in patients with unilateral moderate-to-severe asymptomatic carotid stenosis. Front Aging Neurosci 2025; 16:1497874. [PMID: 39881682 PMCID: PMC11774917 DOI: 10.3389/fnagi.2024.1497874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Background and purpose Asymptomatic carotid stenosis (ACS) is an independent risk factor for ischemic stroke and vascular cognitive impairment, affecting cognitive function across multiple domains. This study aimed to explore differences in static and dynamic intrinsic functional connectivity and temporal dynamics between patients with ACS and those without carotid stenosis. Methods We recruited 30 patients with unilateral moderate-to-severe (stenosis ≥ 50%) ACS and 30 demographically-matched healthy controls. All participants underwent neuropsychological testing and 3.0T brain MRI scans. Resting-state functional MRI (rs-fMRI) was used to calculate both static and dynamic functional connectivity. Dynamic independent component analysis (dICA) was employed to extract independent circuits/networks and to detect time-frequency modulation at the circuit level. Further imaging-behavior associations identified static and dynamic functional connectivity patterns that reflect cognitive decline. Results ACS patients showed altered functional connectivity in multiple brain regions and networks compared to controls. Increased connectivity was observed in the inferior parietal lobule, frontal lobe, and temporal lobe. dICA further revealed changes in the temporal frequency of connectivity in the salience network. Significant differences in the temporal variability of connectivity were found in the fronto-parietal network, dorsal attention network, sensory-motor network, language network, and visual network. The temporal parameters of these brain networks were also related to overall cognition and memory. Conclusions These results suggest that ACS involves not only changes in the static large-scale brain network connectivity but also dynamic temporal variations, which parallel overall cognition and memory recall.
Collapse
Affiliation(s)
- Junjun Wang
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linfeng Song
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Binlin Tian
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Li Yang
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xiaoyu Gu
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xu Chen
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Jiang
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
3
|
Maimaitiaili S, Tang C, Liu C, Lv X, Chen Z, Zhang M, Cai J, Liang Z, Zhao B, Zhang W, Qiao T. Alterations in brain morphology and functional connectivity mediate cognitive decline in carotid atherosclerotic stenosis. Front Aging Neurosci 2024; 16:1395911. [PMID: 38974904 PMCID: PMC11225314 DOI: 10.3389/fnagi.2024.1395911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Background Patients with carotid atherosclerotic stenosis (CAS) often have varying degrees of cognitive decline. However, there is little evidence regarding how brain morphological and functional abnormalities impact the cognitive decline in CAS patients. This study aimed to determine how the brain morphological and functional changes affected the cognitive decline in patients with CAS. Methods The brain morphological differences were analyzed using surface and voxel-based morphometry, and the seed-based whole-brain functional connectivity (FC) abnormalities were analyzed using resting-state functional magnetic resonance imaging. Further, mediation analyses were performed to determine whether and how morphological and FC changes affect cognition in CAS patients. Results The CAS-MCI (CAS patients with mild cognitive impairment) group performed worse in working memory, verbal fluency, and executive time. Cortical thickness (CT) of the left postcentral and superiorparietal were significantly reduced in CAS-MCI patients. The gray matter volume (GMV) of the right olfactory, left temporal pole (superior temporal gyrus) (TPOsup.L), left middle temporal gyrus (MTG.L), and left insula (INS.L) were decreased in the CAS-MCI group. Besides, decreased seed-based FC between TPOsup.L and left precuneus, between MTG.L and TPOsup.L, and between INS.L and MTG.L, left middle frontal gyrus, as well as Superior frontal gyrus, were found in CAS-MCI patients. Mediation analyses demonstrated that morphological and functional abnormalities fully mediated the association between the maximum degree of carotid stenosis and cognitive function. Conclusion Multiple brain regions have decreased GMV and CT in CAS-MCI patients, along with disrupted seed-based FC. These morphological and functional changes play a crucial role in the cognitive impairment in CAS patients.
Collapse
Affiliation(s)
- Subinuer Maimaitiaili
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chen Tang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cheng Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaochen Lv
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengqiang Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zishun Liang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Biao Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Xu F, Ma J, Wang W, Li H. A longitudinal study of the brain structure network changes in HIV patients with ANI: combined VBM with SCN. Front Neurol 2024; 15:1388616. [PMID: 38694776 PMCID: PMC11061470 DOI: 10.3389/fneur.2024.1388616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Background Despite the widespread adoption of combination antiretroviral therapy (cART) in managing HIV, the virus's impact on the brain structure of patients remains significant. This study aims to longitudinally explore the persistent effects of HIV on brain structure, focusing on changes in gray matter volume (GMV) and structural covariance network (SCN) among patients at the Asymptomatic Neurocognitive Impairment (ANI) stage. Methods This research involved 45 HIV patients diagnosed with ANI and 45 demographically matched healthy controls (HCs). The participants were observed over a 1.5-year period. Differences in GMV between groups were analyzed using voxel-based morphometry (VBM), while the graph theory model facilitated the establishment of topological metrics for assessing network indices. These differences were evaluated using two-sample t-tests and paired-sample t-tests, applying the network-based statistics method. Additionally, the study examined correlations between GMV and cognitive performance, as well as clinical variables. Results Compared with HCs, HIV patients demonstrated reduced GMV in the right middle temporal gyrus and left middle frontal gyrus (FWE, p < 0.05), along with decreased betweenness centrality (BC) in the left anterior cingulate and paracingulate cortex. Conversely, an increase in the clustering coefficient (Cp) was observed (FDR, p < 0.05). During the follow-up period, a decline in GMV in the right fusiform gyrus (FWE, p < 0.05) and a reduction in node efficiency (Ne) in the triangular part of the inferior frontal gyrus were noted compared with baseline measurements (FDR, p < 0.05). The SCN of HIV patients exhibited small-world properties across most sparsity levels (Sigma >1), and area under the curve (AUC) analysis revealed no significant statistical differences between groups. Conclusion The findings suggest that despite the administration of combination antiretroviral therapy (cART), HIV continues to exert slow and sustained damage on brain structures. However, when compared to HCs, the small-world properties of the patients' SCNs did not significantly differ, and the clustering coefficient, indicative of the overall information-processing capacity of the brain network, was slightly elevated in HIV patients. This elevation may relate to compensatory effects of brain area functions, the impact of cART, functional reorganization, or inflammatory responses.
Collapse
Affiliation(s)
| | | | | | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Liu X, Xu D, Zhong X, Ren J, Wang H, Yu M, Gao L, Xu H. Altered Callosal Morphology and Connectivity in Asymptomatic Carotid Stenosis. J Magn Reson Imaging 2024; 59:998-1007. [PMID: 37334908 DOI: 10.1002/jmri.28872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Carotid stenosis, even in the clinically asymptomatic stage, causes cognitive impairment, silent lesions, and hemispheric changes. The corpus callosum (CC) is crucial for hemispheric cortical integration and specialization. PURPOSE To examine if CC morphology and connectivity relate to cognitive decline and lesion burden in asymptomatic carotid stenosis (ACS). STUDY TYPE Retrospective, cross-sectional. POPULATION 33 patients with unilaterally severe (70%) ACS and 28 demographically and comorbidity-matched controls. A publicly available healthy adult lifespan (ages between 18 and 80; n = 483) MRI dataset was also included. FIELD STRENGTH/SEQUENCE A 3.0 T; T1 MPRAGE and diffusion weighted gradient echo-planar imaging sequences. ASSESSMENT Structural MRI and multidomain cognitive data were obtained. Midsagittal CC area, circularity, thickness, integrity, and probabilistic tractography were calculated and correlated with cognitive tests and white matter hyperintensity. Fractional anisotropy, mean diffusivity (MD), and radial diffusivity were determined from DTI. STATISTICAL TESTS Independent two-sample t-tests, χ2 tests, Mann-Whitney U, locally weighted scatterplot smoothing (LOWESS) curve fit, and Pearson correlation. A P value < 0.05 was considered statistically significant. RESULTS Patients with ACS demonstrated significant reductions in callosal area, circularity, and thickness compared to controls. The callosal atrophy was significantly correlated with white matter hyperintensity size (r = -0.629, P < 0.001). Voxel-wise analysis of diffusion measures in the volumetric CC showed that ACS patients exhibited significantly lower fractional anisotropy and higher MD and radial diffusivity in the genu and splenium of the CC than controls. Further lifespan trajectory analysis showed that although the midsagittal callosal area, circularity, and thickness exhibited age-related decreases, the values in the ACS patients were significantly lower in all age groups. DATA CONCLUSION Midsagittal callosal atrophy and connectivity reflect the load of silent lesions and the severity of cognitive decline, respectively, suggesting that CC degeneration has potential to serve as an early marker in ACS. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Xitong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| |
Collapse
|
6
|
Fan C, Xu D, Mei H, Zhong X, Ren J, Ma J, Ruan Z, Lv J, Liu X, Wang H, Gao L, Xu H. Hemispheric coupling between structural and functional asymmetries in clinically asymptomatic carotid stenosis with cognitive impairment. Brain Imaging Behav 2024; 18:192-206. [PMID: 37985612 DOI: 10.1007/s11682-023-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Advanced carotid stenosis is a known risk factor for ischemic stroke and vascular dementia, and it is associated with multidomain cognitive impairment as well as asymmetric alterations in hemispheric structure and function. Here we introduced a novel measure-the asymmetry index of amplitude of low-frequency fluctuations (ALFF_AI)-derived from resting-state functional magnetic resonance imaging. This measure captures the hemispheric asymmetry of intrinsic brain activity using high-dimensional registration. We aimed to investigate functional brain asymmetric alterations in patients with severe asymptomatic carotid stenosis (SACS). Furthermore, we extended the analyses of ALFF_AI to different frequencies to detect frequency-specific alterations. Finally, we examined the coupling between hemispheric asymmetric structure and function and the relationship between these results and cognitive tests, as well as the white matter hyperintensity burden. SACS patients presented significantly decreased ALFF_AI in several clusters, including the visual, auditory, parahippocampal, Rolandic, and superior parietal regions. At low frequencies (0.01-0.25 Hz), the ALFF_AI exhibited prominent group differences as frequency increased. Further structure-function coupling analysis indicated that SACS patients had lower coupling in the lateral prefrontal, superior medial frontal, middle temporal, superior parietal, and striatum regions but higher coupling in the lateral occipital regions. These findings suggest that, under potential hemodynamic burden, SACS patients demonstrate asymmetric hemispheric configurations of intrinsic activity patterns and a decoupling between structural and functional asymmetries.
Collapse
Affiliation(s)
- Chenhong Fan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
- The Interventional Diagnostic and Therapeutic Center, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Jiaojiao Ma
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Jinfeng Lv
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Xitong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, 430071, Wuhan City, Hubei Province, China.
| |
Collapse
|
7
|
Wang H, Yu M, Ren J, Zhong X, Xu D, Gao L, Xu H. Neuroanatomical correlates of cognitive impairment following basal ganglia-thalamic post-hemorrhagic stroke: Uncovering network-wide alterations in hemispheric gray matter asymmetry. Brain Res 2023; 1820:148559. [PMID: 37652090 DOI: 10.1016/j.brainres.2023.148559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Cognitive impairment and recovery are central issues in hemorrhagic stroke. This study aimed to investigate whether post-hemorrhagic stroke cognitive impairment (PhSCI) is associated with cortical gray matter (GM) loss and hemispheric asymmetry changes and whether these changes could predict improvements in cognitive function during the recovery. Nineteen patients with PhSCI, comprising 10 with basal ganglia hemorrhage and 9 with thalamic hemorrhage, were recruited. Among them, 9 completed a course of repetitive transcranial magnetic stimulation (rTMS). Additionally, 19 demographically and comorbidity-matched healthy controls were also included. Structural brain MRI and cognitive assessments were performed. Voxel-wise GM volume and hemispheric asymmetry were analyzed. The PhSCI patients exhibited bilateral, yet asymmetric, GM losses in the hippocampus, fusiform, lateral temporal, prefrontal, somatomotor, and inferior parietal regions. The analysis of GM asymmetry revealed that patients showed rightward GM in the lateral temporal, somatomotor, and inferior parietal regions. Among the 9 PhSCI patients who completed rTMS, there was a marginal trend of regional GM increase and leftward GM, and these changes were in parallel with the improvements in cognitive tests. Further lesion connectivity and metanalytic mapping identified two interconnected systems linked to the lesions, which were anchored in the default mode, somatomotor, and salience/cognitive control networks and in the cognitive domains of memory, language, decision-making, and executive function. In conclusion, PhSCI patients exhibited network-wide cortical GM losses, distal to subcortical hemorrhagic lesions, and hemisphere asymmetry changes. These changes appear to predict rTMS-related cognitive improvements, suggesting that even subcortical focal lesions can lead to alterations in distal cortical neuroanatomical architecture. Our preliminary findings provide new insights into the neuroanatomical basis of PhSCI.
Collapse
Affiliation(s)
- Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City 430071, Hubei Province, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City 430071, Hubei Province, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City 430071, Hubei Province, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City 430071, Hubei Province, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City 430071, Hubei Province, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City 430071, Hubei Province, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City 430071, Hubei Province, China.
| |
Collapse
|
8
|
Ren J, Xu D, Mei H, Zhong X, Yu M, Ma J, Fan C, Lv J, Xiao Y, Gao L, Xu H. Asymptomatic carotid stenosis is associated with both edge and network reconfigurations identified by single-subject cortical thickness networks. Front Aging Neurosci 2023; 14:1091829. [PMID: 36711201 PMCID: PMC9878604 DOI: 10.3389/fnagi.2022.1091829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Background and purpose Patients with asymptomatic carotid stenosis, even without stroke, are at high risk for cognitive impairment, and the neuroanatomical basis remains unclear. Using a novel edge-centric structural connectivity (eSC) analysis from individualized single-subject cortical thickness networks, we aimed to examine eSC and network measures in severe (> 70%) asymptomatic carotid stenosis (SACS). Methods Twenty-four SACS patients and 24 demographically- and comorbidities-matched controls were included, and structural MRI and multidomain cognitive data were acquired. Individual eSC was estimated via the Manhattan distances of pairwise cortical thickness histograms. Results In the eSC analysis, SACS patients showed longer interhemispheric but shorter intrahemispheric Manhattan distances seeding from left lateral temporal regions; in network analysis the SACS patients had a decreased system segregation paralleling with white matter hyperintensity burden and recall memory. Further network-based statistic analysis identified several eSC and subgraph features centred around the Perisylvian regions that predicted silent lesion load and cognitive tests. Conclusion We conclude that SACS exhibits abnormal eSC and a less-optimized trade-off between physical cost and network segregation, providing a reference and perspective for identifying high-risk individuals.
Collapse
Affiliation(s)
- Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiaojiao Ma
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chenhong Fan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinfeng Lv
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,*Correspondence: Lei Gao, ✉
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Haibo Xu, ✉
| |
Collapse
|
9
|
Gao L, Xiao Y, Xu H. Gray matter asymmetry in asymptomatic carotid stenosis. Hum Brain Mapp 2021; 42:5665-5676. [PMID: 34498785 PMCID: PMC8559457 DOI: 10.1002/hbm.25645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Even clinically “asymptomatic” carotid stenosis is associated with multidomain cognitive impairment, gray matter (GM) atrophy, and silent lesion. However, the links between them remain unclear. Using structural MRI data, we examined GM asymmetry index (AI) and white matter hyperintensity (WMH) in 24 patients with severe asymptomatic carotid stenosis (SACS), 24 comorbidity‐matched controls, and independent samples of 84 elderly controls and 22 young adults. As compared to controls, SACS patients showed worse verbal memories, higher WMH burden, and right‐lateralized GM in posterior middle temporal and mouth‐somatomotor regions. These clusters extended to pars triangularis, lateral temporal, and cerebellar regions, when compared with young adults. Further, a full‐path of WMH burden (X), GM volume (atrophy, M1), AI (asymmetry, M2), and neuropsychological variables (Y) through a serial mediation model was analyzed. This analysis identified that left‐dominated GM atrophy and right‐lateralized asymmetry in the posterior middle temporal cortex mediated the relationship between WMH burden and recall memory in SACS patients. These results suggest that the unbalanced hemispheric atrophy in the posterior middle temporal cortex is crucial to mediating relationship between WMH burden and verbal recall memories, which may underlie accelerated aging and cognitive deterioration in patients with SACS and other vascular cognitive impairment.
Collapse
Affiliation(s)
- Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, China
| |
Collapse
|
10
|
Kong Y, Li X, Chang L, Liu Y, Jia L, Gao L, Ren L. Hypertension With High Homocysteine Is Associated With Default Network Gray Matter Loss. Front Neurol 2021; 12:740819. [PMID: 34650512 PMCID: PMC8505539 DOI: 10.3389/fneur.2021.740819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Hypertension with high homocysteine (Hcy, ≥10 μmol/L) is also known as H-type hypertension (HHT) and proposed as an independent risk factor for stroke and cognitive impairment. Although previous studies have established the relationships among hypertension, Hcy levels, and cognitive impairment, how they affect brain neuroanatomy remains unclear. Thus, we aimed to investigate whether and to what extent hypertension and high Hcy may affect gray matter volume in 52 middle-aged HHT patients and 51 demographically matched normotensive subjects. Voxel-based morphological analysis suggested that HHT patients experienced significant gray matter loss in the default network. The default network atrophy was significantly correlated with Hcy level and global cognitive function. These findings provide, to our knowledge, novel insights into how HHT affects brain gray matter morphology through blood pressure and Hcy.
Collapse
Affiliation(s)
- Yanliang Kong
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Xin Li
- Department of Ultrasound, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lina Chang
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Yuwei Liu
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lin Jia
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijuan Ren
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China.,Department of Ultrasound, People's Hospital of Tongchuan City, Tongchuan, China
| |
Collapse
|