1
|
Mather M. Autonomic dysfunction in neurodegenerative disease. Nat Rev Neurosci 2025; 26:276-292. [PMID: 40140684 DOI: 10.1038/s41583-025-00911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
In addition to their more studied cognitive and motor effects, neurodegenerative diseases are also associated with impairments in autonomic function - the regulation of involuntary physiological processes. These autonomic impairments manifest in different ways and at different stages depending on the specific disease. The neural networks responsible for autonomic regulation in the brain and body have characteristics that render them particularly susceptible to the prion-like spread of protein aggregation involved in neurodegenerative diseases. Specifically, the axons of these neurons - in both peripheral and central networks - are long and poorly myelinated axons, which make them preferential targets for pathological protein aggregation. Moreover, cortical regions integrating information about the internal state of the body are highly connected with other brain regions, which increases the likelihood of intersection with pathological pathways and prion-like spread of abnormal proteins. This leads to an autonomic 'signature' of dysfunction, characteristic of each neurodegenerative disease, that is linked to the affected networks and regions undergoing pathological aggregation.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
van der Pal Z, Douw L, Genis A, van den Bergh D, Marsman M, Schrantee A, Blanken TF. Tell me why: A scoping review on the fundamental building blocks of fMRI-based network analysis. Neuroimage Clin 2025; 46:103785. [PMID: 40245454 DOI: 10.1016/j.nicl.2025.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Understanding complex brain-behaviour relationships in psychiatric and neurological conditions is crucial for advancing clinical insights. This review explores the current landscape of network estimation methods in the context of functional MRI (fMRI) based network neuroscience, focusing on static undirected network analysis. We focused on papers published in a single year (2022) and characterised what we consider the fundamental building blocks of network analysis: sample size, network size, association type, edge inclusion strategy, edge weights, modelling level, and confounding factors. We found that the most common methods across all included studies (n = 191) were the use of pairwise correlations to estimate the associations between brain regions (79.6 %), estimation of weighted networks (95.3 %), and estimation of the network at the individual level (86.9 %). Importantly, a substantial number of studies lacked comprehensive reporting on their methodological choices, hindering the synthesis of research findings within the field. This review underscores the critical need for careful consideration and transparent reporting of fMRI network estimation methodologies to advance our understanding of complex brain-behaviour relationships. By facilitating the integration between network neuroscience and network psychometrics, we aim to significantly enhance our clinical understanding of these intricate connections.
Collapse
Affiliation(s)
- Z van der Pal
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - L Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands
| | - A Genis
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - D van den Bergh
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - M Marsman
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - A Schrantee
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - T F Blanken
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands; University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 129, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Nogueira-Machado JA, das Chagas Lima E Silva F, Rocha-Silva F, Gomes N. Amyotrophic Lateral Sclerosis (ALS): An Overview of Genetic and Metabolic Signaling Mechanisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:83-90. [PMID: 39171600 DOI: 10.2174/0118715273315891240801065231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.
Collapse
Affiliation(s)
| | | | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia Gomes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Huckins G, Poldrack RA. Generative dynamical models for classification of rsfMRI data. Netw Neurosci 2024; 8:1613-1633. [PMID: 39735493 PMCID: PMC11675094 DOI: 10.1162/netn_a_00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/02/2024] [Indexed: 12/31/2024] Open
Abstract
The growing availability of large-scale neuroimaging datasets and user-friendly machine learning tools has led to a recent surge in studies that use fMRI data to predict psychological or behavioral variables. Many such studies classify fMRI data on the basis of static features, but fewer try to leverage brain dynamics for classification. Here, we pilot a generative, dynamical approach for classifying resting-state fMRI (rsfMRI) data. By fitting separate hidden Markov models to the classes in our training data and assigning class labels to test data based on their likelihood under those models, we are able to take advantage of dynamical patterns in the data without confronting the statistical limitations of some other dynamical approaches. Moreover, we demonstrate that hidden Markov models are able to successfully perform within-subject classification on the MyConnectome dataset solely on the basis of transition probabilities among their hidden states. On the other hand, individual Human Connectome Project subjects cannot be identified on the basis of hidden state transition probabilities alone-although a vector autoregressive model does achieve high performance. These results demonstrate a dynamical classification approach for rsfMRI data that shows promising performance, particularly for within-subject classification, and has the potential to afford greater interpretability than other approaches.
Collapse
Affiliation(s)
- Grace Huckins
- Neurosciences Interdepartmental Program, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
5
|
Chen J, Benedyk A, Moldavski A, Tost H, Meyer-Lindenberg A, Braun U, Durstewitz D, Koppe G, Schwarz E. Quantifying brain-functional dynamics using deep dynamical systems: Technical considerations. iScience 2024; 27:110545. [PMID: 39165842 PMCID: PMC11334782 DOI: 10.1016/j.isci.2024.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Both mental health and mental illness unfold in complex and unpredictable ways. Novel artificial intelligence approaches from the area of dynamical systems reconstruction can characterize such dynamics and help understand the underlying brain mechanisms, which can also be used as potential biomarkers. However, applying deep learning to model dynamical systems at the individual level must overcome numerous computational challenges to be reproducible and clinically useful. In this study, we performed an extensive analysis of these challenges using generative modeling of brain dynamics from fMRI data as an example and demonstrated their impact on classifying patients with schizophrenia and major depression. This study highlights the tendency of deep learning models to identify functionally unique solutions during parameter optimization, which severely impacts the reproducibility of downstream predictions. We hope this study guides the future development of individual-level generative models and similar machine learning approaches aimed at identifying reproducible biomarkers of mental illness.
Collapse
Affiliation(s)
- Jiarui Chen
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Anastasia Benedyk
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Alexander Moldavski
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Urs Braun
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, J5, 68159 Mannheim, Germany
- Faculty of Physics and Astronomy, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Georgia Koppe
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, J5, 68159 Mannheim, Germany
| | - Emanuel Schwarz
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, M7, 68161 Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim, 68159 Mannheim, Germany
| |
Collapse
|
6
|
Umar TP, Jain N, Papageorgakopoulou M, Shaheen RS, Alsamhori JF, Muzzamil M, Kostiks A. Artificial intelligence for screening and diagnosis of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:425-436. [PMID: 38563056 DOI: 10.1080/21678421.2024.2334836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rare and fatal neurological disease that leads to progressive motor function degeneration. Diagnosing ALS is challenging due to the absence of a specific detection test. The use of artificial intelligence (AI) can assist in the investigation and treatment of ALS. METHODS We searched seven databases for literature on the application of AI in the early diagnosis and screening of ALS in humans. The findings were summarized using random-effects summary receiver operating characteristic curve. The risk of bias (RoB) analysis was carried out using QUADAS-2 or QUADAS-C tools. RESULTS In the 34 analyzed studies, a meta-prevalence of 47% for ALS was noted. For ALS detection, the pooled sensitivity of AI models was 94.3% (95% CI - 63.2% to 99.4%) with a pooled specificity of 98.9% (95% CI - 92.4% to 99.9%). For ALS classification, the pooled sensitivity of AI models was 90.9% (95% CI - 86.5% to 93.9%) with a pooled specificity of 92.3% (95% CI - 84.8% to 96.3%). Based on type of input for classification, the pooled sensitivity of AI models for gait, electromyography, and magnetic resonance signals was 91.2%, 92.6%, and 82.2%, respectively. The pooled specificity for gait, electromyography, and magnetic resonance signals was 94.1%, 96.5%, and 77.3%, respectively. CONCLUSIONS Although AI can play a significant role in the screening and diagnosis of ALS due to its high sensitivities and specificities, concerns remain regarding quality of evidence reported in the literature.
Collapse
Affiliation(s)
- Tungki Pratama Umar
- Department of Medical Profession, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Nityanand Jain
- Faculty of Medicine, Riga Stradinš University, Riga, Latvia
| | | | | | | | - Muhammad Muzzamil
- Department of Public Health, Health Services Academy, Islamabad, Pakistan, and
| | - Andrejs Kostiks
- Department of Neurology, Riga East University Clinical Hospital, Riga, Latvia
| |
Collapse
|
7
|
Sun W, Liu SH, Wei XJ, Sun H, Ma ZW, Yu XF. Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism. J Neurol 2024; 271:2238-2257. [PMID: 38367047 DOI: 10.1007/s00415-024-12201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Han Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao-Jing Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Wei Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue-Fan Yu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Kushol R, Luk CC, Dey A, Benatar M, Briemberg H, Dionne A, Dupré N, Frayne R, Genge A, Gibson S, Graham SJ, Korngut L, Seres P, Welsh RC, Wilman AH, Zinman L, Kalra S, Yang YH. SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer. Comput Med Imaging Graph 2023; 108:102279. [PMID: 37573646 DOI: 10.1016/j.compmedimag.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks. However, deep learning methods applied to neuroimaging have not achieved superior performance in classifying ALS patients from healthy controls due to insignificant structural changes correlated with pathological features. Thus, a critical challenge in deep models is to identify discriminative features from limited training data. To address this challenge, this study introduces a framework called SF2Former, which leverages the power of the vision transformer architecture to distinguish ALS subjects from the control group by exploiting the long-range relationships among image features. Additionally, spatial and frequency domain information is combined to enhance the network's performance, as MRI scans are initially captured in the frequency domain and then converted to the spatial domain. The proposed framework is trained using a series of consecutive coronal slices and utilizes pre-trained weights from ImageNet through transfer learning. Finally, a majority voting scheme is employed on the coronal slices of each subject to generate the final classification decision. The proposed architecture is extensively evaluated with multi-modal neuroimaging data (i.e., T1-weighted, R2*, FLAIR) using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of the proposed strategy in terms of classification accuracy compared to several popular deep learning-based techniques.
Collapse
Affiliation(s)
- Rafsanjany Kushol
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada.
| | - Collin C Luk
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Avyarthana Dey
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael Benatar
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hannah Briemberg
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Annie Dionne
- Axe Neurosciences, CHU de Québec, Université Laval, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Nicolas Dupré
- Axe Neurosciences, CHU de Québec, Université Laval, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Angela Genge
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Summer Gibson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Simon J Graham
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Peter Seres
- Departments of Biomedical Engineering and Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Robert C Welsh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Alan H Wilman
- Departments of Biomedical Engineering and Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sanjay Kalra
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada; Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yee-Hong Yang
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Fernandes F, Barbalho I, Bispo Júnior A, Alves L, Nagem D, Lins H, Arrais Júnior E, Coutinho KD, Morais AHF, Santos JPQ, Machado GM, Henriques J, Teixeira C, Dourado Júnior MET, Lindquist ARR, Valentim RAM. Digital Alternative Communication for Individuals with Amyotrophic Lateral Sclerosis: What We Have. J Clin Med 2023; 12:5235. [PMID: 37629277 PMCID: PMC10455505 DOI: 10.3390/jcm12165235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a disease that compromises the motor system and the functional abilities of the person in an irreversible way, causing the progressive loss of the ability to communicate. Tools based on Augmentative and Alternative Communication are essential for promoting autonomy and improving communication, life quality, and survival. This Systematic Literature Review aimed to provide evidence on eye-image-based Human-Computer Interaction approaches for the Augmentative and Alternative Communication of people with Amyotrophic Lateral Sclerosis. The Systematic Literature Review was conducted and guided following a protocol consisting of search questions, inclusion and exclusion criteria, and quality assessment, to select primary studies published between 2010 and 2021 in six repositories: Science Direct, Web of Science, Springer, IEEE Xplore, ACM Digital Library, and PubMed. After the screening, 25 primary studies were evaluated. These studies showcased four low-cost, non-invasive Human-Computer Interaction strategies employed for Augmentative and Alternative Communication in people with Amyotrophic Lateral Sclerosis. The strategies included Eye-Gaze, which featured in 36% of the studies; Eye-Blink and Eye-Tracking, each accounting for 28% of the approaches; and the Hybrid strategy, employed in 8% of the studies. For these approaches, several computational techniques were identified. For a better understanding, a workflow containing the development phases and the respective methods used by each strategy was generated. The results indicate the possibility and feasibility of developing Human-Computer Interaction resources based on eye images for Augmentative and Alternative Communication in a control group. The absence of experimental testing in people with Amyotrophic Lateral Sclerosis reiterates the challenges related to the scalability, efficiency, and usability of these technologies for people with the disease. Although challenges still exist, the findings represent important advances in the fields of health sciences and technology, promoting a promising future with possibilities for better life quality.
Collapse
Affiliation(s)
- Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ingridy Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Arnaldo Bispo Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Luca Alves
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Danilo Nagem
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Hertz Lins
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ernano Arrais Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Karilany D. Coutinho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Antônio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | - João Paulo Q. Santos
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | | | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - César Teixeira
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - Mário E. T. Dourado Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
- Department of Integrated Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil
| | - Ana R. R. Lindquist
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| |
Collapse
|
10
|
Chen H, Hu Z, Ke Z, Xu Y, Bai F, Liu Z. Aberrant Multimodal Connectivity Pattern Involved in Default Mode Network and Limbic Network in Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:brainsci13050803. [PMID: 37239275 DOI: 10.3390/brainsci13050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that progressively affects bulbar and limb function. Despite increasing recognition of the disease as a multinetwork disorder characterized by aberrant structural and functional connectivity, its integrity agreement and its predictive value for disease diagnosis remain to be fully elucidated. In this study, we recruited 37 ALS patients and 25 healthy controls (HCs). High-resolution 3D T1-weighted imaging and resting-state functional magnetic resonance imaging were, respectively, applied to construct multimodal connectomes. Following strict neuroimaging selection criteria, 18 ALS and 25 HC patients were included. Network-based statistic (NBS) and the coupling of grey matter structural-functional connectivity (SC-FC coupling) were performed. Finally, the support vector machine (SVM) method was used to distinguish the ALS patients from HCs. Results showed that, compared with HCs, ALS individuals exhibited a significantly increased functional network, predominantly encompassing the connections between the default mode network (DMN) and the frontoparietal network (FPN). The increased structural connections predominantly involved the inter-regional connections between the limbic network (LN) and the DMN, the salience/ventral attention network (SVAN) and FPN, while the decreased structural connections mainly involved connections between the LN and the subcortical network (SN). We also found increased SC-FC coupling in DMN-related brain regions and decoupling in LN-related brain regions in ALS, which could differentiate ALS from HCs with promising capacity based on SVM. Our findings highlight that DMN and LN may play a vital role in the pathophysiological mechanism of ALS. Additionally, SC-FC coupling could be regarded as a promising neuroimaging biomarker for ALS and shows important clinical potential for early recognition of ALS individuals.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Zhihong Ke
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhuo Liu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
11
|
Lopez-Bernal D, Balderas D, Ponce P, Rojas M, Molina A. Implications of Artificial Intelligence Algorithms in the Diagnosis and Treatment of Motor Neuron Diseases-A Review. Life (Basel) 2023; 13:life13041031. [PMID: 37109560 PMCID: PMC10146231 DOI: 10.3390/life13041031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a group of chronic neurological disorders characterized by the progressive failure of the motor system. Currently, these disorders do not have a definitive treatment; therefore, it is of huge importance to propose new and more advanced diagnoses and treatment options for MNDs. Nowadays, artificial intelligence is being applied to solve several real-life problems in different areas, including healthcare. It has shown great potential to accelerate the understanding and management of many health disorders, including neurological ones. Therefore, the main objective of this work is to offer a review of the most important research that has been done on the application of artificial intelligence models for analyzing motor disorders. This review includes a general description of the most commonly used AI algorithms and their usage in MND diagnosis, prognosis, and treatment. Finally, we highlight the main issues that must be overcome to take full advantage of what AI can offer us when dealing with MNDs.
Collapse
Affiliation(s)
- Diego Lopez-Bernal
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - David Balderas
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - Pedro Ponce
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - Mario Rojas
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| | - Arturo Molina
- Tecnologico de Monterrey, National Department of Research, Puente 222, Del. Tlalpan, Mexico City 14380, Mexico
| |
Collapse
|
12
|
Chaki J, Woźniak M. Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Li H, Zhang X, Sun X, Dong L, Lu H, Yue S, Zhang H. Functional networks in prolonged disorders of consciousness. Front Neurosci 2023; 17:1113695. [PMID: 36875660 PMCID: PMC9981972 DOI: 10.3389/fnins.2023.1113695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Prolonged disorders of consciousness (DoC) are characterized by extended disruptions of brain activities that sustain wakefulness and awareness and are caused by various etiologies. During the past decades, neuroimaging has been a practical method of investigation in basic and clinical research to identify how brain properties interact in different levels of consciousness. Resting-state functional connectivity within and between canonical cortical networks correlates with consciousness by a calculation of the associated temporal blood oxygen level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals the brain function of patients with prolonged DoC. There are certain brain networks including the default mode, dorsal attention, executive control, salience, auditory, visual, and sensorimotor networks that have been reported to be altered in low-level states of consciousness under either pathological or physiological states. Analysis of brain network connections based on functional imaging contributes to more accurate judgments of consciousness level and prognosis at the brain level. In this review, neurobehavioral evaluation of prolonged DoC and the functional connectivity within brain networks based on resting-state fMRI were reviewed to provide reference values for clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaonian Zhang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xinting Sun
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Linghui Dong
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Haitao Lu
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
14
|
Filippi M, Spinelli EG, Cividini C, Ghirelli A, Basaia S, Agosta F. The human functional connectome in neurodegenerative diseases: relationship to pathology and clinical progression. Expert Rev Neurother 2023; 23:59-73. [PMID: 36710600 DOI: 10.1080/14737175.2023.2174016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Neurodegenerative diseases can be considered as 'disconnection syndromes,' in which a communication breakdown prompts cognitive or motor dysfunction. Mathematical models applied to functional resting-state MRI allow for the organization of the brain into nodes and edges, which interact to form the functional brain connectome. AREAS COVERED The authors discuss the recent applications of functional connectomics to neurodegenerative diseases, from preclinical diagnosis, to follow up along with the progressive changes in network organization, to the prediction of the progressive spread of neurodegeneration, to stratification of patients into prognostic groups, and to record responses to treatment. The authors searched PubMed using the terms 'neurodegenerative diseases' AND 'fMRI' AND 'functional connectome' OR 'functional connectivity' AND 'connectomics' OR 'graph metrics' OR 'graph analysis.' The time range covered the past 20 years. EXPERT OPINION Considering the great pathological and phenotypical heterogeneity of neurodegenerative diseases, identifying a common framework to diagnose, monitor and elaborate prognostic models is challenging. Graph analysis can describe the complexity of brain architectural rearrangements supporting the network-based hypothesis as unifying pathogenetic mechanism. Although a multidisciplinary team is needed to overcome the limit of methodologic complexity in clinical application, advanced methodologies are valuable tools to better characterize functional disconnection in neurodegeneration.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Das T, Kaur H, Gour P, Prasad K, Lynn AM, Prakash A, Kumar V. Intersection of network medicine and machine learning towards investigating the key biomarkers and pathways underlying amyotrophic lateral sclerosis: a systematic review. Brief Bioinform 2022; 23:6780269. [PMID: 36411673 DOI: 10.1093/bib/bbac442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Network medicine is an emerging area of research that focuses on delving into the molecular complexity of the disease, leading to the discovery of network biomarkers and therapeutic target discovery. Amyotrophic lateral sclerosis (ALS) is a complicated rare disease with unknown pathogenesis and no available treatment. In ALS, network properties appear to be potential biomarkers that can be beneficial in disease-related applications when explored independently or in tandem with machine learning (ML) techniques. OBJECTIVE This systematic literature review explores recent trends in network medicine and implementations of network-based ML algorithms in ALS. We aim to provide an overview of the identified primary studies and gather details on identifying the potential biomarkers and delineated pathways. METHODS The current study consists of searching for and investigating primary studies from PubMed and Dimensions.ai, published between 2018 and 2022 that reported network medicine perspectives and the coupling of ML techniques. Each abstract and full-text study was individually evaluated, and the relevant studies were finally included in the review for discussion once they met the inclusion and exclusion criteria. RESULTS We identified 109 eligible publications from primary studies representing this systematic review. The data coalesced into two themes: application of network science to identify disease modules and promising biomarkers in ALS, along with network-based ML approaches. Conclusion This systematic review gives an overview of the network medicine approaches and implementations of network-based ML algorithms in ALS to determine new disease genes, and identify critical pathways and therapeutic target discovery for personalized treatment.
Collapse
Affiliation(s)
- Trishala Das
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Harbinder Kaur
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Pratibha Gour
- Dept. of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| | - Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP-201303, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon-122413, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, UP-201303, India
| |
Collapse
|
16
|
Münch M, Müller HP, Behler A, Ludolph AC, Kassubek J. Segmental alterations of the corpus callosum in motor neuron disease: A DTI and texture analysis in 575 patients. Neuroimage Clin 2022; 35:103061. [PMID: 35653913 PMCID: PMC9163839 DOI: 10.1016/j.nicl.2022.103061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 10/29/2022]
Abstract
INTRODUCTION Within the core neuroimaging signature of amyotrophic lateral sclerosis (ALS), the corpus callosum (CC) is increasingly recognized as a consistent feature. The aim of this study was to investigate the sensitivity and specificity of the microstructural segmental CC morphology, assessed by diffusion tensor imaging (DTI) and high-resolution T1-weighted (T1w) imaging, in a large cohort of ALS patients including different clinical phenotypes. METHODS In a single-centre study, 575 patients with ALS (classical phenotype, N = 432; restricted phenotypes primary lateral sclerosis (PLS) N = 55, flail arm syndrome (FAS) N = 45, progressive bulbar palsy (PBP) N = 22, lower motor neuron disease (LMND) N = 21) and 112 healthy controls underwent multiparametric MRI, i.e. volume-rendering T1w scans and DTI. Tract-based fractional anisotropy statistics (TFAS) was applied to callosal tracts of CC areas I-V, identified from DTI data (tract-of-interest (TOI) analysis), and texture analysis was applied to T1w data. In order to further specify the callosal alterations, a support vector machine (SVM) algorithm was used to discriminate between motor neuron disease patients and controls. RESULTS The analysis of white matter integrity revealed predominantly FA reductions for tracts of the callosal areas I, II, and III (with highest reductions in callosal area III) for all ALS patients and separately for each phenotype when compared to controls; texture analysis demonstrated significant alterations of the parameters entropy and homogeneity for ALS patients and all phenotypes for the CC areas I, II, and III (with again highest reductions in callosal area III) compared to controls. With SVM applied on multiparametric callosal parameters of area III, a separation of all ALS patients including phenotypes from controls with 72% sensitivity and 73% specificity was achieved. These results for callosal area III parameters could be improved by an SVM of six multiparametric callosal parameters of areas I, II, and III, achieving a separation of all ALS patients including phenotypes from controls with 84% sensitivity and 85% specificity. DISCUSSION The multiparametric MRI texture and DTI analysis demonstrated substantial alterations of the frontal and central CC with most significant alterations in callosal area III (motor segment) in ALS and separately in all investigated phenotypes (PLS, FAS, PBP, LMND) in comparison to controls, while no significant differences were observed between ALS and its phenotypes. The combination of the texture and the DTI parameters in an unbiased SVM-based approach might contribute as a neuroimaging marker for the assessment of the CC in ALS, including subtypes.
Collapse
Affiliation(s)
| | | | - Anna Behler
- Department of Neurology, University of Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|