1
|
Li A, Chen C, Feng Y, Hu R, Feng X, Yang J, Lin X, Mei L. Functional divisions of the left anterior and posterior temporoparietal junction for phonological and semantic processing in Chinese character reading. Neuroimage 2025; 311:121201. [PMID: 40216211 DOI: 10.1016/j.neuroimage.2025.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/27/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
Previous studies have shown that the left temporoparietal junction (TPJ) plays a critical role in word reading. Nevertheless, there is still controversy surrounding the phonological and semantic functions of the left TPJ. The parietal unified connectivity-biased computation (PUCC) model posits that the function of the left TPJ depends on both the neurocomputation of this local area and its long-range connectivity. To clarify the specific roles of different TPJ subregions in phonological and semantic processing of Chinese characters, the present study used connectivity-based clustering to identify seven subdivisions within the left TPJ, and conducted comprehensive analyses including functional and structural connectivity, univariate and multivariate analyses (i.e., representational similarity analysis, RSA) on multimodal imaging data (task-state fMRI, resting-state fMRI, and diffusion-weighted imaging [DWI]). Functional and structural connectivity analyses revealed that the left anterior TPJ had stronger connections with the phonological network, while the left posterior TPJ had stronger connections with the semantic network. RSA revealed that the left anterior and posterior TPJ represented phonological and semantic information of Chinese characters, respectively. More importantly, the phonological and semantic representations of the left TPJ were respectively correlated with its functional connectivity to the phonological and semantic networks. Altogether, our results provide a more elaborate perspective on the functional dissociation of the left anterior and posterior TPJ in phonological and semantic processing of Chinese characters, and support the PUCC model.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Jingyu Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xingying Lin
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
van der Pal Z, Douw L, Genis A, van den Bergh D, Marsman M, Schrantee A, Blanken TF. Tell me why: A scoping review on the fundamental building blocks of fMRI-based network analysis. Neuroimage Clin 2025; 46:103785. [PMID: 40245454 DOI: 10.1016/j.nicl.2025.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Understanding complex brain-behaviour relationships in psychiatric and neurological conditions is crucial for advancing clinical insights. This review explores the current landscape of network estimation methods in the context of functional MRI (fMRI) based network neuroscience, focusing on static undirected network analysis. We focused on papers published in a single year (2022) and characterised what we consider the fundamental building blocks of network analysis: sample size, network size, association type, edge inclusion strategy, edge weights, modelling level, and confounding factors. We found that the most common methods across all included studies (n = 191) were the use of pairwise correlations to estimate the associations between brain regions (79.6 %), estimation of weighted networks (95.3 %), and estimation of the network at the individual level (86.9 %). Importantly, a substantial number of studies lacked comprehensive reporting on their methodological choices, hindering the synthesis of research findings within the field. This review underscores the critical need for careful consideration and transparent reporting of fMRI network estimation methodologies to advance our understanding of complex brain-behaviour relationships. By facilitating the integration between network neuroscience and network psychometrics, we aim to significantly enhance our clinical understanding of these intricate connections.
Collapse
Affiliation(s)
- Z van der Pal
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - L Douw
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Boelelaan 1117, Amsterdam, the Netherlands
| | - A Genis
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - D van den Bergh
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - M Marsman
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands
| | - A Schrantee
- Amsterdam UMC location University of Amsterdam, Department of Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - T F Blanken
- University of Amsterdam, Department of Psychological Methods, Nieuwe Prinsengracht 129B, Amsterdam, the Netherlands; University of Amsterdam, Department of Clinical Psychology, Nieuwe Achtergracht 129, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Feng Y, Zhang S, Li A, Feng X, Hu R, Mei L. The intrinsic functional connectivity patterns of the phonological and semantic networks in word reading. Neuroscience 2025; 571:139-150. [PMID: 39988194 DOI: 10.1016/j.neuroscience.2025.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Previous studies have revealed that phonological and semantic processing recruit separate brain networks. However, the intrinsic functional connectivity patterns of the phonological and semantic networks remain unclear. To address this issue, the present study explored the static and dynamic functional connectivity patterns of phonological and semantic networks during the resting state. The static functional connectivity pattern of the two networks was examined by adopting a voxel-based global brain connectivity (GBC) method. In this analysis, we estimated the within-network connectivity (WNC), between-network connectivity between phonological and semantic networks (BNC_PS), and between-network connectivity of the two language networks (i.e., phonological and semantic networks) with the non-language network (BNC_N). The results showed that both phonological and semantic networks exhibited stronger intra-network connectivity (i.e., WNC) than inter-network connectivity (i.e., BNC_PS and BNC_N), indicating that both networks are relatively encapsulated. For dynamic functional connectivity, three distinct dynamic functional states were identified. Specifically, State 1 showed an overall positive connectivity pattern. State 2 exhibited an overall weak connectivity pattern. State 3 showed positive intra-network connectivity and negative inter-network connectivity. These results suggested that phonological and semantic networks exhibited a flexible integration and segregation pattern over time. Taken together, our results revealed that the phonological and semantic networks showed an intra-network integration and inter-network segregation pattern. These findings deepen our understanding of the intrinsic functional connectivity patterns of language networks.
Collapse
Affiliation(s)
- Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Shuo Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
4
|
Gu L, Pang Y, Yang J, Qu J, Gu N, Mei L. Orthographic and phonological processing in the left ventral occipitotemporal cortex during Chinese word reading. Psychophysiology 2024; 61:e14703. [PMID: 39367529 DOI: 10.1111/psyp.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
The left ventral occipitotemporal cortex (lvOT) has been consistently identified as a crucial structure in word reading, and its function varies across subregions. Nevertheless, the specific function of the lvOT and its subregions remains controversial because the obvious grapheme-to-phoneme correspondence rules of alphabetic languages make it difficult to disentangle the contributions of orthography and phonology to neural activations. To explore information processing in lvOT subregions, the present study manipulated the orthography and phonology in a factorial design and used the fMRI rapid adaptation paradigm. The results revealed a posterior-to-anterior functional gradient in lvOT in Chinese word reading and specified that the functional transition from sublexical to lexical processing occurred in the middle subregion close to the classic VWFA. More importantly, we found that the middle and posterior subregions of lvOT are responsible for processing both orthographic and phonological information during Chinese word reading. These results elaborated the function of the lvOT in Chinese word reading.
Collapse
Affiliation(s)
- Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Nannan Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Liu CY, Qin L, Tao R, Deng W, Jiang T, Wang N, Matthews S, Siok WT. Delineating Region-Specific contributions and connectivity patterns for semantic association and categorization through ROI and Granger causality analysis. BRAIN AND LANGUAGE 2024; 258:105476. [PMID: 39357106 DOI: 10.1016/j.bandl.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The neural mechanisms supporting semantic association and categorization are examined in this study. Semantic association involves linking concepts through shared themes, events, or scenes, while semantic categorization organizes meanings hierarchically based on defining features. Twenty-three adults participated in an fMRI study performing categorization and association judgment tasks. Results showed stronger activation in the inferior frontal gyrus during association and marginally weaker activation in the posterior middle temporal gyrus (pMTG) during categorization. Granger causality analysis revealed bottom-up connectivity from the visual cortex to the hippocampus during semantic association, whereas semantic categorization exhibited strong reciprocal connections between the pMTG and frontal semantic control regions, together with information flow from the visual association area and hippocampus to the pars triangularis. We propose that demands on semantic retrieval, precision of semantic representation, perceptual experiences and world knowledge result in observable differences between these two semantic relations.
Collapse
Affiliation(s)
- Chun Yin Liu
- Department of Medical Biophysics, University of Western Ontario, Canada
| | - Lang Qin
- School of Chinese as a Second Language, Peking University, Beijing 100871, PR China
| | - Ran Tao
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China; Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Wenxiyuan Deng
- Department of Linguistics, The University of Hong Kong, Hong Kong SAR 999077, PR China
| | - Tian Jiang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Stephen Matthews
- Department of Linguistics, The University of Hong Kong, Hong Kong SAR 999077, PR China
| | - Wai Ting Siok
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China.
| |
Collapse
|
6
|
Wu ZM, Wang P, Zhong YY, Liu Y, Liu XC, Wang JJ, Cao XL, Liu L, Sun L, Yang L, Zang YF, Qian Y, Cao QJ, Wang YF, Yang BR. The underlying neuropsychological and neural correlates of the impaired Chinese reading skills in children with attention deficit hyperactivity disorder. Eur Child Adolesc Psychiatry 2024; 33:3979-3992. [PMID: 38662058 PMCID: PMC11588871 DOI: 10.1007/s00787-024-02422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Impaired basic academic skills (e.g., word recognition) are common in children with Attention Deficit Hyperactivity Disorder (ADHD). The underlying neuropsychological and neural correlates of impaired Chinese reading skills in children with ADHD have not been substantially explored. Three hundred and two children with ADHD (all medication-naïve) and 105 healthy controls underwent the Chinese language skill assessment, and 175 also underwent fMRI scans (84 ADHD and 91 controls). Between-group and mediation analyses were applied to explore the interrelationships of the diagnosis of ADHD, cognitive dysfunction, and impaired reading skills. Five ADHD-related brain functional networks, including the default mode network (DMN) and the dorsal attention network (DAN), were built using predefined regions of interest. Voxel-based group-wise comparisons were performed. The ADHD group performed worse than the control group in word-level reading ability tests, with lower scores in Chinese character recognition (CR) and word chains (WS) (all P < 0.05). With full-scale IQ and sustained attention in the mediation model, the direct effect of ADHD status on the CR score became insignificant (P = 0.066). The underlying neural correlates for the orthographic knowledge (OT) and CR differed between the ADHD and the control group. The ADHD group tended to recruit more DMN regions to maintain their reading performance, while the control group seemed to utilize more DAN regions. Children with ADHD generally presented impaired word-level reading skills, which might be caused by impaired sustained attention and lower IQ. According to the brain functional results, we infer that ADHD children might utilize a different strategy to maintain their orthographic knowledge and character recognition performance.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Childrens Hospital, Shenzhen, China.
- Shenzhen Pediatrics Institute of Shantou University Medical College, Shenzhen, China.
| | | | | | - Yun Liu
- Shenzhen Childrens Hospital, Shenzhen, China
| | | | - Jiu-Ju Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | | | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Yang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yu-Feng Zang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Qian
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Qing-Jiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | | |
Collapse
|
7
|
Mou H, Liu L, Zhou T, Yan Z, Wang Y. Action expectancy modulates activity in the mirror neuron system and mentalizing system. Neuroimage 2024; 300:120876. [PMID: 39343111 DOI: 10.1016/j.neuroimage.2024.120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Action understanding involves two distinct processing levels that engage separate neural mechanisms: perception of concrete kinematic information and recognition of abstract action intentions. The mirror neuron system and the mentalizing system have both been linked to concrete action and abstract information processing, but their specific roles remain debatable. Here, we conducted a functional magnetic resonance imaging study with 26 participants who passively observed expected and unexpected actions. We performed whole-brain activation, region of interest, and effective connectivity analyses to investigate the neural correlates of these actions. Whole-brain activation analyses revealed that expected actions were associated with increased activation in the left medial superior frontal gyrus, while unexpected actions were linked to heightened activity in the left supramarginal gyrus, left superior parietal lobule, right inferior temporal gyrus, and left middle frontal gyrus. Region of interest analyses demonstrated that the left ventral premotor cortex exhibited greater activation during the observation of expected actions compared to unexpected actions, while the left inferior frontal gyrus, left superior parietal lobule, and left precuneus showed stronger activation during the observation of unexpected actions. Effective connectivity was observed between the left ventral premotor cortex and the left angular gyrus, left intraparietal sulcus, left dorsal premotor cortex, and left ventromedial prefrontal cortex with the middle frontal gyrus when observing unexpected, but not expected, actions. These findings suggest that expected actions are primarily processed by the mirror neuron system, whereas unexpected actions engage both the mirror neuron system and the mentalizing system, with these systems playing complementary roles in the understanding of unexpected actions.
Collapse
Affiliation(s)
- Hong Mou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Likai Liu
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Ting Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Zhurui Yan
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
8
|
Wang XL, Zheng XJ, Zhang LJ, Hu JY, Wei H, Ling Q, He LQ, Chen C, Wang YX, Chen X, Shao Y. Altered spontaneous brain activity patterns in hypertensive retinopathy using fractional amplitude of low-frequency fluctuations: a functional magnetic resonance imaging study. Int J Ophthalmol 2024; 17:1665-1674. [PMID: 39296557 PMCID: PMC11367428 DOI: 10.18240/ijo.2024.09.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 09/21/2024] Open
Abstract
AIM To study functional brain abnormalities in patients with hypertensive retinopathy (HR) and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations (fALFFs) method. METHODS Twenty HR patients and 20 healthy controls (HCs) were respectively recruited. The age, gender, and educational background characteristics of the two groups were similar. After functional magnetic resonance imaging (fMRI) scanning, the subjects' spontaneous brain activity was evaluated with the fALFF method. Receiver operating characteristic (ROC) curve analysis was used to classify the data. Further, we used Pearson's correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR. RESULTS The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus (RO-MFG) and right lingual gyrus. In contrast, the values of fALFFs in the left middle temporal gyrus (MTG), left superior temporal pole (STP), left middle frontal gyrus (MFG), left superior marginal gyrus (SMG), left superior parietal lobule (SPL), and right supplementary motor area (SMA) were higher in the HR group. The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group (P<0.001). The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores (r=0.9232; P<0.0001) and depression scores (r=0.9682; P<0.0001). CONCLUSION fALFF values in multiple brain regions of HR patients are abnormal, suggesting that these brain regions in HR patients may be dysfunctional, which may help to reveal the pathophysiological mechanisms of HR.
Collapse
Affiliation(s)
- Xue-Lin Wang
- Department of Ophthalmology, the First Affiliated Hospital of Jiangxi Medical College, Eye Hospital of Shangrao City, Shangrao 334000, Jiangxi Province, China
| | - Xu-Jun Zheng
- Jiangxi Medical College, Shangrao 334000, Jiangxi Province, China
| | - Li-Juan Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin-Yu Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Qi He
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cheng Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi-Xin Wang
- School of Optometry and Vision Science, Cardiff University, Cardiff CF24 4HQ, Wales, UK
| | - Xu Chen
- Ophthalmology Centre of Maastricht University, Maastricht 6200MS, Limburg Provincie, Netherlands
| | - Yi Shao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
9
|
Li G, Zhong D, Zhang N, Dong J, Yan Y, Xu Q, Xu S, Yang L, Hao D, Li CSR. The inter-related effects of alcohol use severity and sleep deficiency on semantic processing in young adults. Neuroscience 2024; 555:116-124. [PMID: 39059740 DOI: 10.1016/j.neuroscience.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Both alcohol misuse and sleep deficiency are associated with deficits in semantic processing. However, alcohol misuse and sleep deficiency are frequently comorbid and their inter-related effects on semantic processing as well as the underlying neural mechanisms remain to be investigated. METHODS We curated the Human Connectome Project data of 973 young adults (508 women) to examine the neural correlates of semantic processing in link with the severity of alcohol use and sleep deficiency. The latter were each evaluated using the first principal component (PC1) of principal component analysis of all drinking metrics and the Pittsburgh Sleep Quality Index (PSQI). We employed path modeling to elucidate the interplay among clinical, behavioral, and neural variables. RESULTS Among women, we observed a significant negative correlation between the left precentral gyrus (PCG) and PSQI scores. Mediation analysis revealed that the left PCG activity fully mediated the relationship between PSQI scores and word comprehension in language tasks. In women alone also, the right middle frontal gyrus (MFG) exhibited a significant negative correlation with PC1. The best path model illustrated the associations among PC1, PSQI scores, PCG activity, and MFG activation during semantic processing in women. CONCLUSIONS Alcohol misuse may lead to reduced MFG activation while sleep deficiency hinder semantic processing by suppressing PCG activity in women. The pathway model underscores the influence of sleep quality and alcohol consumption severity on semantic processing in women, suggesting that sex differences in these effects need to be further investigated.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dandan Zhong
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Dong
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Sleep Center, Department of Neurology, China National Clinical Research Center of Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Yan
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qixiao Xu
- Physical Education Department, Beijing University of Technology, Beijing, China
| | - Shuchun Xu
- Traditional Chinese Medicine Department, the University Hospital of Beijing University of Technology, Beijing, China
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Wei Y, Wang J, Wang H, Paz-Alonso PM. Functional interactions underlying visuospatial orthographic processes in Chinese reading. Cereb Cortex 2024; 34:bhae359. [PMID: 39294003 DOI: 10.1093/cercor/bhae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
As a logographic writing system, Chinese reading involves the processing of visuospatial orthographic (ORT) properties. However, this aspect has received relatively less attention in neuroimaging research, which has tended to emphasize phonological (PHO) and semantic (SEM) aspects in processing Chinese characters. Here, we compared the functional correlates supporting all these three processes in a functional MRI single-character reading study, in which 35 native Chinese adults were asked to make ORT, PHO, and SEM judgments in separate task-specific activation blocks. Our findings revealed increased involvement of the right hemisphere in processing Chinese visuospatial orthography, particularly evident in the right ventral occipito-temporal cortex (vOTC). Additionally, time course analysis revealed that the left superior parietal gyrus (SPG) was initially involved in SEM processing but contributed to the visuospatial processing of words in a later time window. Finally, ORT processing demonstrated stronger recruitment of left vOTC-SPG-middle frontal gyrus (MFG) functional connectivity compared to SEM processing. This functional coupling correlated with reduced regional engagement of the left vOTC and MFG, highlighting that visuospatial ORT processes in reading Chinese rely on functional interactions among key regions rather than local regional processes. In conclusion, these findings underscore visuospatial ORT processes as a distinctive feature of reading logographic characters.
Collapse
Affiliation(s)
- Yanjun Wei
- Key Laboratory of the Cognitive Science of Language, Beijing Language and Culture University, Ministry of Education, Xueyuan Road 15, Beijing 10083, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Jianqin Wang
- Key Laboratory of the Cognitive Science of Language, Beijing Language and Culture University, Ministry of Education, Xueyuan Road 15, Beijing 10083, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Huiping Wang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Pedro M Paz-Alonso
- BCBL, Basque Center on Cognition, Brain and Language, Mikeletegi Pasalekua 69, Donostia 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbo 48013, Spain
| |
Collapse
|
11
|
Huang C, Li A, Pang Y, Yang J, Zhang J, Wu X, Mei L. How the intrinsic functional connectivity patterns of the semantic network support semantic processing. Brain Imaging Behav 2024; 18:539-554. [PMID: 38261218 DOI: 10.1007/s11682-024-00849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Semantic processing, a core of language comprehension, involves the activation of brain regions dispersed extensively across the frontal, temporal, and parietal cortices that compose the semantic network. To comprehend the functional structure of this semantic network and how it prepares for semantic processing, we investigated its intrinsic functional connectivity (FC) and the relation between this pattern and semantic processing ability in a large sample from the Human Connectome Project (HCP) dataset. We first defined a well-studied brain network for semantic processing, and then we characterized the within-network connectivity (WNC) and the between-network connectivity (BNC) within this network using a voxel-based global brain connectivity (GBC) method based on resting-state functional magnetic resonance imaging (fMRI). The results showed that 97.73% of the voxels in the semantic network displayed considerably greater WNC than BNC, demonstrating that the semantic network is a fairly encapsulated network. Moreover, multiple connector hubs in the semantic network were identified after applying the criterion of WNC > 1 SD above the mean WNC of the semantic network. More importantly, three of these connector hubs (i.e., the left anterior temporal lobe, angular gyrus, and orbital part of the inferior frontal gyrus) were reliably associated with semantic processing ability. Our findings suggest that the three identified regions use WNC as the central mechanism for supporting semantic processing and that task-independent spontaneous connectivity in the semantic network is essential for semantic processing.
Collapse
Affiliation(s)
- Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jingxian Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Wu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Lin Z, Li X, Qi G, Yang J, Sun H, Guo Q, Wu J, Xu M. Phonological properties of logographic words modulate brain activation in bilinguals: a comparative study of Chinese characters and Japanese Kanji. Cereb Cortex 2024; 34:bhae150. [PMID: 38652552 PMCID: PMC11037275 DOI: 10.1093/cercor/bhae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The brain networks for the first (L1) and second (L2) languages are dynamically formed in the bilingual brain. This study delves into the neural mechanisms associated with logographic-logographic bilingualism, where both languages employ visually complex and conceptually rich logographic scripts. Using functional Magnetic Resonance Imaging, we examined the brain activity of Chinese-Japanese bilinguals and Japanese-Chinese bilinguals as they engaged in rhyming tasks with Chinese characters and Japanese Kanji. Results showed that Japanese-Chinese bilinguals processed both languages using common brain areas, demonstrating an assimilation pattern, whereas Chinese-Japanese bilinguals recruited additional neural regions in the left lateral prefrontal cortex for processing Japanese Kanji, reflecting their accommodation to the higher phonological complexity of L2. In addition, Japanese speakers relied more on the phonological processing route, while Chinese speakers favored visual form analysis for both languages, indicating differing neural strategy preferences between the 2 bilingual groups. Moreover, multivariate pattern analysis demonstrated that, despite the considerable neural overlap, each bilingual group formed distinguishable neural representations for each language. These findings highlight the brain's capacity for neural adaptability and specificity when processing complex logographic languages, enriching our understanding of the neural underpinnings supporting bilingual language processing.
Collapse
Affiliation(s)
- Zhenglong Lin
- School of Psychology, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, Guangdong, China
| | - Xiujun Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Weixing Road 7186, Changchun 130022, Jilin, China
| | - Geqi Qi
- Department of Psychology, College of Education Science, Inner Mongolia Normal University, West College Road 235, Huhhot 010021, Inner Mongolia, China
| | - Jiajia Yang
- Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University, 2-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang 110055, Liaoning, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang 110055, Liaoning, China
| | - Jinglong Wu
- Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University, 2-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- Key Laboratory of Biomimetic Robots and System, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Zhongguancun South Street No 5, Beijing 100811, China
| | - Min Xu
- School of Psychology, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, Guangdong, China
| |
Collapse
|
13
|
Liu X, Zhang L, Yu S, Bai Z, Qi T, Mao H, Zhen Z, Dong Q, Liu L. The Effects of Age and Reading Experience on the Lifespan Neurodevelopment for Reading Comprehension. J Cogn Neurosci 2024; 36:239-260. [PMID: 38010312 DOI: 10.1162/jocn_a_02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Reading comprehension is a vital cognitive skill that individuals use throughout their lives. The neurodevelopment of reading comprehension across the lifespan, however, remains underresearched. Furthermore, factors such as maturation and experience significantly influence functional brain development. Given the complexity of reading comprehension, which incorporates lower-level word reading process and higher-level semantic integration process, our study aims to investigate how age and reading experience influence the neurobiology underpinning these two processes across the lifespan. fMRI data of 158 participants aged from 7 to 77 years were collected during a passive word viewing task and a sentence comprehension task to engage the lower- and higher-level processes, respectively. We found that the neurodevelopment of the lower-level process was primarily influenced by age, showing increased activation and connectivity with age in parieto-occipital and middle/inferior frontal lobes related to morphological-semantic mapping while decreased activation in the temporoparietal regions linked to phonological processing. However, the brain function of the higher-level process was primarily influenced by reading experience, exhibiting a greater reliance on the frontotemporal semantic network with enhanced sentence-level reading performance. Furthermore, reading experience did not significantly affect the brain function of children, but had a positive effect on young adults in the lower-level process and on middle-aged and older adults in the higher-level process. These findings indicate that the brain function for lower- and higher-level processes of reading comprehension is differently affected by maturation and reading experience, and the experience effect is contingent on age regarding the two processes.
Collapse
Affiliation(s)
| | | | | | | | - Ting Qi
- Beijing University of Posts and Telecommunications
| | | | | | | | - Li Liu
- Beijing Normal University
| |
Collapse
|
14
|
Rao Y, Ge L, Wu J. A systematic review and coordinate-based meta-analysis of fMRI studies on acupuncture at LR 3. Front Neurosci 2024; 18:1341567. [PMID: 38348133 PMCID: PMC10859399 DOI: 10.3389/fnins.2024.1341567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Objectives The acupoint LR3 (Taichong) is frequently utilized in clinical acupuncture. However, its underlying neural mechanisms remain not fully elucidated, with speculations suggesting its close association with specific brain activity patterns. Methods A comprehensive literature search was undertaken across several online databases, such as PubMed, Web of Science, Embase, Cochrane Library, CNKI (China National Knowledge Infrastructure), Wanfang Database, VIP Database, and the Chinese Biomedical Database. Two independent researchers handled the study selection, quality assessment, and data extraction processes. Using the seed-based d-mapping meta-analysis approach, we evaluated the brain regions activated by LR3 acupuncture in healthy subjects. Subsequent subgroup analysis was stratified by fMRI types, and regression analyses were performed considering the duration of acupuncture, depth of needle insertion, and needle diameter. The identified active brain regions were then intricately projected onto large-scale functional networks. Results A total of 10 studies met the criteria for inclusion, encompassing 319 healthy right-handed participants. The meta-analysis indicates that acupuncture at the LR3 activates regions such as the right postcentral gyrus, left thalamus, left middle frontal gyrus, and right superior frontal gyrus. Additionally, meta-regression analysis highlights that increased acupuncture duration correlates with progressively intensified activation of the right superior frontal gyrus. Subgroup analysis posits that variations in the type of fMRI employed might account for heterogeneity in the pooled results. Concurrently, functional network analysis identifies the primary activated regions as aligning with the Basal ganglia network, Auditory network, Left executive control network, Posterior salience network, Right executive control network, and Sensorimotor networks. Conclusion Acupuncture at the LR3 in healthy subjects selectively activates brain regions linked to pain perception, emotional processing, and linguistic functions. Extending the needle retention duration intensifies the activation of the right superior frontal gyrus. These findings enrich our comprehension of the neurobiological underpinnings of acupuncture's role in pain mitigation and emotional regulation.
Collapse
Affiliation(s)
- Yawen Rao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | |
Collapse
|
15
|
Liu X, Zhang W, Dong J, Yan Z, Dong Q, Feng J, Lai Y, Yan H. Effects of sleep deprivation on language-related brain functional connectivity: differences by gender and age. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01161-4. [PMID: 38273105 DOI: 10.3758/s13415-024-01161-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Sleep deprivation (SD) negatively affects many cognitive functions, such as language performance. However, what remains unclear is whether and how SD affects the language-related brain network based on gender and age differences. The current study of 86 healthy adults used resting-state functional magnetic resonance imaging (rs-fMRI) to measure language-related functional connectivity after full sleep or partial SD. Gender and age differences in functional connectivity were assessed across four linguistic aspects: phonetics, morphology, semantics, and syntax. The results showed that SD can affect the connectivity status of language-related brain networks, especially syntax-related networks. Furthermore, the influence of SD on the functional connectivity in language-related networks differed between male and female groups, and between younger and older groups. Specifically, there were gender differences in the temporal association cortex and age differences in the parietal association cortex, during full sleep versus partial SD. These findings highlight changes in the brain's functional connectivity in response to SD as a potential source of gender and age differences in brain function.
Collapse
Affiliation(s)
- Xinyi Liu
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
- Graduate School, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Wenjia Zhang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Jie Dong
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Zhiqiang Yan
- Department of Neurosurgery, Xijing Hospital, the fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Qiufeng Dong
- Department of Neurosurgery, Xijing Hospital, the fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Jing Feng
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
- School of English Studies, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Yaling Lai
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
- School of English Studies, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, 710128, Xi'an, Shaanxi, China.
| |
Collapse
|