1
|
Vafaii H, Mandino F, Desrosiers-Grégoire G, O'Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair MC, Constable RT, Lake EMR, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nat Commun 2024; 15:229. [PMID: 38172111 PMCID: PMC10764905 DOI: 10.1038/s41467-023-44363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.
Collapse
Affiliation(s)
- Hadi Vafaii
- Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xinxin Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Section of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mallar Chakravarty
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Vafaii H, Mandino F, Desrosiers-Grégoire G, O’Connor D, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair MC, Constable RT, Lake EMR, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. RESEARCH SQUARE 2023:rs.3.rs-2823802. [PMID: 37162818 PMCID: PMC10168440 DOI: 10.21203/rs.3.rs-2823802/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employed wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determined cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks are overlapping rather than disjoint. Our results show that multiple BOLD networks are detected via Ca2+ signals; there is considerable network overlap (both modalities); networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks; and, despite similarities, important differences are detected across modalities (e.g., brain region "network diversity"). In conclusion, Ca2+ imaging uncovered overlapping functional cortical organization in the mouse that reflected several, but not all, properties observed with fMRI-BOLD signals.
Collapse
Affiliation(s)
- Hadi Vafaii
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Comp. Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health Univ. Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xinxin Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Mallar Chakravarty
- Comp. Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health Univ. Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Michael C. Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Evelyn MR. Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|