1
|
Pourmotabbed H, Martin CG, Goodale SE, Doss DJ, Wang S, Bayrak RG, Kang H, Morgan VL, Englot DJ, Chang C. Multimodal state-dependent connectivity analysis of arousal and autonomic centers in the brainstem and basal forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623092. [PMID: 39605337 PMCID: PMC11601260 DOI: 10.1101/2024.11.11.623092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Vigilance is a continuously altering state of cortical activation that influences cognition and behavior and is disrupted in multiple brain pathologies. Neuromodulatory nuclei in the brainstem and basal forebrain are implicated in arousal regulation and are key drivers of widespread neuronal activity and communication. However, it is unclear how their large-scale brain network architecture changes across dynamic variations in vigilance state (i.e., alertness and drowsiness). In this study, we leverage simultaneous EEG and 3T multi-echo functional magnetic resonance imaging (fMRI) to elucidate the vigilance-dependent connectivity of arousal regulation centers in the brainstem and basal forebrain. During states of low vigilance, most of the neuromodulatory nuclei investigated here exhibit a stronger global correlation pattern and greater connectivity to the thalamus, precuneus, and sensory and motor cortices. In a more alert state, the nuclei exhibit the strongest connectivity to the salience, default mode, and auditory networks. These vigilance-dependent correlation patterns persist even after applying multiple preprocessing strategies to reduce systemic vascular effects. To validate our findings, we analyze two large 3T and 7T fMRI datasets from the Human Connectome Project and demonstrate that the static and vigilance-dependent connectivity profiles of the arousal nuclei are reproducible across 3T multi-echo, 3T single-echo, and 7T single-echo fMRI modalities. Overall, this work provides novel insights into the role of neuromodulatory systems in vigilance-related brain activity.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Caroline G. Martin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sarah E. Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Derek J. Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Roza G. Bayrak
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Victoria L. Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Cai J, Wang Y, McKeown MJ. Advances in functional and structural imaging of the brainstem: implications for disease. Curr Opin Neurol 2024; 37:361-368. [PMID: 38884636 DOI: 10.1097/wco.0000000000001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW The brainstem's complex anatomy and relatively small size means that structural and functional assessment of this structure is done less frequently compared to other brain areas. However, recent years have seen substantial progress in brainstem imaging, enabling more detailed investigations into its structure and function, as well as its role in neuropathology. RECENT FINDINGS Advancements in ultrahigh field MRI technology have allowed for unprecedented spatial resolution in brainstem imaging, facilitating the new creation of detailed brainstem-specific atlases. Methodological improvements have significantly enhanced the accuracy of physiological (cardiac and respiratory) noise correction within brainstem imaging studies. These technological and methodological advancements have allowed for in-depth analyses of the brainstem's anatomy, including quantitative assessments and examinations of structural connectivity within both gray and white matter. Furthermore, functional studies, including assessments of activation patterns and functional connectivity, have revealed the brainstem's roles in both specialized functions and broader neural integration. Notably, these investigations have identified alterations in brainstem structure and function associated with various neurological disorders. SUMMARY The aforementioned developments have allowed for a greater appreciation of the importance of the brainstem in the wider context of neuroscience and clinical neurology.
Collapse
Affiliation(s)
- Jiayue Cai
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yuheng Wang
- School of Biomedical Engineering
- Faculty of Medicine
| | - Martin J McKeown
- School of Biomedical Engineering
- Faculty of Medicine
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Tan H, Du C, Zhang L, Guo Y, Yang Y, Sun Q, Zhang Q, Li L. Lesions of the lateral habenula excite dopamine neurons in the ventral tegmental area and serotonin neurons in the dorsal raphe nuclei in hemiparkinsonian rats. Brain Res 2024; 1835:148918. [PMID: 38588847 DOI: 10.1016/j.brainres.2024.148918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.
Collapse
Affiliation(s)
- Huihui Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Chengxue Du
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yaxin Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qingfeng Sun
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
4
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Chu HY, Smith Y, Lytton WW, Grafton S, Villalba R, Masilamoni G, Wichmann T. Dysfunction of motor cortices in Parkinson's disease. Cereb Cortex 2024; 34:bhae294. [PMID: 39066504 PMCID: PMC11281850 DOI: 10.1093/cercor/bhae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebral cortex has long been thought to be involved in the pathophysiology of motor symptoms of Parkinson's disease. The impaired cortical function is believed to be a direct and immediate effect of pathologically patterned basal ganglia output, mediated to the cerebral cortex by way of the ventral motor thalamus. However, recent studies in humans with Parkinson's disease and in animal models of the disease have provided strong evidence suggesting that the involvement of the cerebral cortex is much broader than merely serving as a passive conduit for subcortical disturbances. In the present review, we discuss Parkinson's disease-related changes in frontal cortical motor regions, focusing on neuropathology, plasticity, changes in neurotransmission, and altered network interactions. We will also examine recent studies exploring the cortical circuits as potential targets for neuromodulation to treat Parkinson's disease.
Collapse
Affiliation(s)
- Hong-Yuan Chu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Rd N.W., Washington D.C. 20007, United States
| | - Yoland Smith
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - William W Lytton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, United States
- Department of Neurology, Kings County Hospital, 451 Clarkson Avenue,Brooklyn, NY 11203, United States
| | - Scott Grafton
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Psychological and Brain Sciences, University of California, 551 UCEN Road, Santa Barbara, CA 93106, United States
| | - Rosa Villalba
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Gunasingh Masilamoni
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| | - Thomas Wichmann
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States
- Department of Neurology, School of Medicine, Emory University, 12 Executive Drive N.E., Atlanta, GA 30329, United States
- Emory National Primate Research Center, 954 Gatewood Road N.E., Emory University, Atlanta, GA 30329, United States
| |
Collapse
|
6
|
Li XL, Li F, Zhu XY, Wang XD, Kou ZZ, Liu SQ, Li H. Whole-brain mapping of monosynaptic afferent inputs to the CRH neurons in the medial prefrontal cortex of mice. J Anat 2024; 244:527-536. [PMID: 38009263 PMCID: PMC10862190 DOI: 10.1111/joa.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons are densely distributed in the medial prefrontal cortex (mPFC), which plays a crucial role in integrating and processing emotional and cognitive inputs from other brain regions. Therefore, it is important to know the neural afferent patterns of mPFCCRH neurons, which are still unclear. Here, we utilized a rabies virus-based monosynaptic retrograde tracing system to map the presynaptic afferents of the mPFCCRH neurons throughout the entire brain. The results show that the mPFCCRH neurons receive inputs from three main groups of brain regions: (1) the cortex, primarily the orbital cortex, somatomotor areas, and anterior cingulate cortex; (2) the thalamus, primarily the anteromedial nucleus, mediodorsal thalamic nucleus, and central medial thalamic nucleus; and (3) other brain regions, primarily the basolateral amygdala, hippocampus, and dorsal raphe nucleus. Taken together, our results are valuable for further investigations into the roles of the mPFCCRH neurons in normal and neurological disease states. These investigations can shed light on various aspects such as cognitive processing, emotional modulation, motivation, sociability, and pain.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Fei Li
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Xin-Yi Zhu
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Xiao-Dong Wang
- Department of Emergency Medicine, Inner Mongolia Armed Police Corps Hospital, Hohhot, China
| | - Zhen-Zhen Kou
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| | - Shang-Qing Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
- School of International Education and Cooperation, North Sichuan Medical College, Nanchong, China
| | - Hui Li
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Sampaio TB, Schamne MG, Santos JR, Ferro MM, Miyoshi E, Prediger RD. Exploring Parkinson's Disease-Associated Depression: Role of Inflammation on the Noradrenergic and Serotonergic Pathways. Brain Sci 2024; 14:100. [PMID: 38275520 PMCID: PMC10813485 DOI: 10.3390/brainsci14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial disease, with genetic and environmental factors contributing to the disease onset. Classically, PD is a movement disorder characterized by the loss of dopaminergic neurons in the nigrostriatal pathway and intraneuronal aggregates mainly constituted of the protein α-synuclein. However, PD patients also display non-motor symptoms, including depression, which have been linked to functional abnormalities of non-dopaminergic neurons, including serotonergic and noradrenergic ones. Thus, through this comprehensive literature review, we shed light on the noradrenergic and serotonergic impairment linked to depression in PD, focusing on the putative involvement of inflammatory mechanisms.
Collapse
Affiliation(s)
| | - Marissa Giovanna Schamne
- Graduate Program in Biomedical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Jean Rodrigo Santos
- Department of Pharmacy, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Marcelo Machado Ferro
- Graduate Program in Biomedical Sciences, Department of General Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Edmar Miyoshi
- Graduate Program in Biomedical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Rui Daniel Prediger
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
8
|
Putyatin IA, Titova NV. [Neurochemical mechanisms of tremor in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:64-72. [PMID: 39690553 DOI: 10.17116/jnevro202412411164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tremor is one of the main motor symptoms of Parkinson's disease, and its pathophysiology remains largely unknown. The clinical and pathomorphological heterogeneity of tremor and the not always response to therapy complicate the task of researchers and clinicians. This review discusses the specific degeneration of neurotransmitter systems driving the development of tremor, and the influence of neurotransmitters on specific anatomical entities according to current models explaining tremor. It is discusses how changes in neurotransmitter systems may influence the clinical diversity of tremor and differences in response to therapy. Data from clinical trials demonstrating the effect of the dopamine receptor agonist piribedil on tremor are presented.
Collapse
Affiliation(s)
- I A Putyatin
- Pirogov Russian National Research Medical University (Pirogovsky University), Moscow, Russia
| | - N V Titova
- Pirogov Russian National Research Medical University (Pirogovsky University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
9
|
Allen NE, Romaliiska O, Naisby J. Pain and the Non-Pharmacological Management of Pain in People with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S65-S80. [PMID: 38457146 PMCID: PMC11380256 DOI: 10.3233/jpd-230227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Pain is a distressing and universal experience, yet everyone's pain experience is influenced by a complex array of biological, psychological, and social factors. For people with Parkinson's disease (PwP), these biopsychosocial factors include neurodegeneration and the psychological and social factors that accompany living with a chronic, neurodegenerative condition in addition to the factors experienced by those in the general population (e.g., living with co-morbidities such as osteoarthritis). The way these factors influence each individual is likely to determine which pain management strategies are optimal for them. This review first describes pain and the biopsychosocial model of pain. It explores how pain is classified in Parkinson's disease (PD) and describes the three main types of pain: nociceptive, neuropathic, and nociplastic pain. This background provides context for a discussion of non-pharmacological pain management strategies that may aid in the management of pain in PwP; exercise, psychological strategies, acupuncture and massage. While there is little PD-specific research to inform the non-pharmacological management of pain, findings from current PD research are combined with that from chronic pain research to present recommendations for clinical practice. Recommendations include assessment that incorporates potential biopsychosocial contributors to pain that will then guide a holistic, multi-modal approach to management. As exercise provides overall benefits for PwP, those with chronic pain should be carefully monitored with exercise prescribed and adjusted accordingly. Research is needed to develop and evaluate multi-modal approaches to pain management that are delivered in a biopsychosocial framework.
Collapse
Affiliation(s)
- Natalie Elizabeth Allen
- Discipline of Physiotherapy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Oksana Romaliiska
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenni Naisby
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|