1
|
John S, Kalathil D, Pothuraju R, Nair SA. Deciphering ETS2: An indispensable conduit to cancer. Biochim Biophys Acta Rev Cancer 2025:189368. [PMID: 40490201 DOI: 10.1016/j.bbcan.2025.189368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 06/03/2025] [Accepted: 06/03/2025] [Indexed: 06/11/2025]
Abstract
E26 Transformation-Specific homolog 2 (ETS2) is a founding member of the ETS family of transcription factors and has been implicated in several developmental and survival functions. The predominant route of its action is by directly binding and regulating the promoters of its target genes, although it can function through other regulatory mechanisms as well. In this review, a comprehensive understanding of the contribution of ETS2 in health and disease is described with specific focus on cancer. ETS2 demonstrates extreme complexity as it can act as a double-edged sword in cancer with tumour suppressive or oncogenic functions in a context specific manner. Here, we delineate the different signalling pathways, post-translational modifications, miRNA regulations and protein-protein interactions that illustrate the role of ETS2 as an emerging biomarker with special emphasis on its contribution to 'hallmarks of cancer'. Given the evidently opposing effects of ETS2 in different cancers, elucidating the critical mechanisms in its development and progression can validate ETS2's potential as a novel therapeutic target. Finally, we provide insights into frontier areas of research focus that implicate ETS2 and can translate into clinical outcomes.
Collapse
Affiliation(s)
- Samu John
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Dhanya Kalathil
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India; Department of Biology, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467, USA.
| | - Ramesh Pothuraju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| | - Sivakumari Asha Nair
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India.
| |
Collapse
|
2
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
3
|
Plotnik JP, Hollenhorst PC. Interaction with ZMYND11 mediates opposing roles of Ras-responsive transcription factors ETS1 and ETS2. Nucleic Acids Res 2017; 45:4452-4462. [PMID: 28119415 PMCID: PMC5416753 DOI: 10.1093/nar/gkx039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of RAS/MAPK signaling is a driver of over one third of all human carcinomas. The homologous transcription factors ETS1 and ETS2 mediate activation of gene expression programs downstream of RAS/MAPK signaling. ETS1 is important for oncogenesis in many tumor types. However, ETS2 can act as an oncogene in some cellular backgrounds, and as a tumor suppressor in others, and the molecular mechanism responsible for this cell-type specific function remains unknown. Here, we show that ETS1 and ETS2 can regulate a cell migration gene expression program in opposite directions, and provide the first comparison of the ETS1 and ETS2 cistromes. This genomic data and an ETS1 deletion line reveal that the opposite function of ETS2 is a result of binding site competition and transcriptional attenuation due to weaker transcriptional activation by ETS2 compared to ETS1. This weaker activation was mapped to the ETS2 N-terminus and a specific interaction with the co-repressor ZMYND11 (BS69). Furthermore, ZMYND11 expression levels in patient tumors correlated with oncogenic versus tumor suppressive roles of ETS2. Therefore, these data indicate a novel and specific mechanism allowing ETS2 to switch between oncogenic and tumor suppressive functions in a cell-type specific manner.
Collapse
Affiliation(s)
- Joshua P Plotnik
- Biology Department, Indiana University, Bloomington, IN 47405, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Liu Y, Tennant DA, Zhu Z, Heath JK, Yao X, He S. DiME: a scalable disease module identification algorithm with application to glioma progression. PLoS One 2014; 9:e86693. [PMID: 24523864 PMCID: PMC3921127 DOI: 10.1371/journal.pone.0086693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/13/2013] [Indexed: 11/21/2022] Open
Abstract
Disease module is a group of molecular components that interact intensively in the disease specific biological network. Since the connectivity and activity of disease modules may shed light on the molecular mechanisms of pathogenesis and disease progression, their identification becomes one of the most important challenges in network medicine, an emerging paradigm to study complex human disease. This paper proposes a novel algorithm, DiME (Disease Module Extraction), to identify putative disease modules from biological networks. We have developed novel heuristics to optimise Community Extraction, a module criterion originally proposed for social network analysis, to extract topological core modules from biological networks as putative disease modules. In addition, we have incorporated a statistical significance measure, B-score, to evaluate the quality of extracted modules. As an application to complex diseases, we have employed DiME to investigate the molecular mechanisms that underpin the progression of glioma, the most common type of brain tumour. We have built low (grade II) - and high (GBM) - grade glioma co-expression networks from three independent datasets and then applied DiME to extract potential disease modules from both networks for comparison. Examination of the interconnectivity of the identified modules have revealed changes in topology and module activity (expression) between low- and high- grade tumours, which are characteristic of the major shifts in the constitution and physiology of tumour cells during glioma progression. Our results suggest that transcription factors E2F4, AR and ETS1 are potential key regulators in tumour progression. Our DiME compiled software, R/C++ source code, sample data and a tutorial are available at http://www.cs.bham.ac.uk/~szh/DiME.
Collapse
Affiliation(s)
- Yunpeng Liu
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Daniel A. Tennant
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - John K. Heath
- Centre for Systems Biology, School of Biological Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Xin Yao
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Shan He
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Biology, School of Biological Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Yockell-Lelièvre J, Spriet C, Cantin P, Malenfant P, Heliot L, de Launoit Y, Audette M. Functional cooperation between Stat-1 and ets-1 to optimize icam-1 gene transcription. Biochem Cell Biol 2010; 87:905-18. [PMID: 19935876 DOI: 10.1139/o09-055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) plays an important role in the immune system, enabling the interactions between effector cells and target cells. It is also known to be involved in tumor growth and metastasis. Its expression is transcriptionally regulated by several proinflammatory cytokines including IFN-gamma, which induces ICAM-1 transcription via the JAK-STAT signaling pathway in a Stat1-dependent fashion. The ICAM-1 promoter contains several cis-active regulatory elements including 2 Ets binding sites (EBSs) located at positions -158 and -138 relatively to the AUG, which were previously shown to play a role in the constitutive activity of the ICAM-1 promoter. In the present study, we have determined whether the EBSs are also involved in the regulation of ICAM-1 gene transcription by pro-inflammatory cytokines. Transient transfection assays were performed with reporter genes containing ICAM-1 promoter constructions cloned upstream from the firefly luciferase gene. Site-specific mutations of the EBS diminished the promoter activity stimulated by IFN-gamma, although the IFN-gamma responsive element (pIgammaRE), which binds Stat1, was intact. Stimulation of the transcriptional activity following IFN-gamma treatment was significantly reduced when both EBSs were inactivated. Co-immunoprecipitation experiments provided evidence of a physical interaction involving Ets1 and Stat1. In COS-1 and HEK 293 cells cotransfected with CFP-Stat1 and YFP-Ets fusion protein, fluorescence resonance energy transfer experiments confirmed the close proximity of these 2 proteins in living cells following treatment with IFN-gamma.
Collapse
Affiliation(s)
- Julien Yockell-Lelièvre
- Centre de recherche en endocrinologie moléculaire et oncologique, Centre de recherche du CHUQ, Pavillon CHUL, 2705 boulevard Laurier, QC G1V 4G2, Canada
| | | | | | | | | | | | | |
Collapse
|