1
|
Wang Y, Liu X, Wang X, Lu J, Tian Y, Liu Q, Xue J. Matricellular proteins: Potential biomarkers in head and neck cancer. J Cell Commun Signal 2024; 18:e12027. [PMID: 38946720 PMCID: PMC11208127 DOI: 10.1002/ccs3.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 07/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of diverse multidomain macromolecules, including collagen, proteoglycans, and fibronectin, that significantly contribute to the mechanical properties of tissues. Matricellular proteins (MCPs), as a family of non-structural proteins, play a crucial role in regulating various ECM functions. They exert their biological effects by interacting with matrix proteins, cell surface receptors, cytokines, and proteases. These interactions govern essential cellular processes such as differentiation, proliferation, adhesion, migration as well as multiple signal transduction pathways. Consequently, MCPs are pivotal in maintaining tissue homeostasis while orchestrating intricate molecular mechanisms within the ECM framework. The expression level of MCPs in adult steady-state tissues is significantly low; however, under pathological conditions such as inflammation and cancer, there is a substantial increase in their expression. In recent years, an increasing number of studies have focused on elucidating the role and significance of MCPs in the development and progression of head and neck cancer (HNC). During HNC progression, there is a remarkable upregulation in MCP expression. Through their distinctive structure and function, they actively promote tumor growth, invasion, epithelial-mesenchymal transition, and lymphatic metastasis of HNC cells. Moreover, by binding to integrins and modulating various signaling pathways, they effectively execute their biological functions. Furthermore, MCPs also hold potential as prognostic indicators. Although the star proteins of various MCPs have been extensively investigated, there remains a plethora of MCP family members that necessitate further scrutiny. This article comprehensively examines the functionalities of each MCP and highlights the research advancements in the context of HNC, with an aim to identify novel biomarkers for HNC and propose promising avenues for future investigations.
Collapse
Affiliation(s)
- Yunsheng Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xudong Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xingyue Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jiyong Lu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Youxin Tian
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Qinjiang Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jincai Xue
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| |
Collapse
|
2
|
Barbosa S, Laureano NK, Hadiwikarta WW, Visioli F, Bonrouhi M, Pajdzik K, Conde-Lopez C, Herold-Mende C, Eidt G, Langie R, Lamers ML, Stögbauer F, Hess J, Kurth I, Jou A. The Role of SOX2 and SOX9 in Radioresistance and Tumor Recurrence. Cancers (Basel) 2024; 16:439. [PMID: 38275880 PMCID: PMC10814462 DOI: 10.3390/cancers16020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) exhibits considerable variability in patient outcome. It has been reported that SOX2 plays a role in proliferation, tumor growth, drug resistance, and metastasis in a variety of cancer types. Additionally, SOX9 has been implicated in immune tolerance and treatment failures. SOX2 and SOX9 induce treatment failure by a molecular mechanism that has not yet been elucidated. This study explores the inverse association of SOX2/SOX9 and their distinct expression in tumors, influencing the tumor microenvironment and radiotherapy responses. Through public RNA sequencing data, human biopsy samples, and knockdown cellular models, we explored the effects of inverted SOX2 and SOX9 expression. We found that patients expressing SOX2LowSOX9High showed decreased survival compared to SOX2HighSOX9Low. A survival analysis of patients stratified by radiotherapy and human papillomavirus brings additional clinical relevance. We identified a gene set signature comprising newly discovered candidate genes resulting from inverted SOX2/SOX9 expression. Moreover, the TGF-β pathway emerges as a significant predicted contributor to the overexpression of these candidate genes. In vitro findings reveal that silencing SOX2 enhances tumor radioresistance, while SOX9 silencing enhances radiosensitivity. These discoveries lay the groundwork for further studies on the therapeutic potential of transcription factors in optimizing HNSCC treatment.
Collapse
Affiliation(s)
- Silvia Barbosa
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Natalia Koerich Laureano
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Wahyu Wijaya Hadiwikarta
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Fernanda Visioli
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Mahnaz Bonrouhi
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kinga Pajdzik
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Cristina Conde-Lopez
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gustavo Eidt
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Renan Langie
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Fabian Stögbauer
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Germany and Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 80337 Munich, Germany
| | - Jochen Hess
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ina Kurth
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Adriana Jou
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Dentistry, Institute of Toxicology and Pharmacology, Pontifícial Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| |
Collapse
|
3
|
Huang J, Meng Q, Liu R, Li H, Li Y, Yang Z, Wang Y, Wanyan C, Yang X, Wei J. The development of radioresistant oral squamous carcinoma cell lines and identification of radiotherapy-related biomarkers. Clin Transl Oncol 2023; 25:3006-3020. [PMID: 37029240 DOI: 10.1007/s12094-023-03169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND In the treatment of oral squamous cell carcinoma (OSCC), radiation resistance remains an important obstacle to patient outcomes. Progress in understanding the molecular mechanisms of radioresistance has been limited by research models that do not fully recapitulate the biological features of solid tumors. In this study, we aimed to develop novel in vitro models to investigate the underlying basis of radioresistance in OSCC and to identify novel biomarkers. METHODS Parental OSCC cells (SCC9 and CAL27) were repeatedly exposed to ionizing radiation to develop isogenic radioresistant cell lines. We characterized the phenotypic differences between the parental and radioresistant cell lines. RNA sequencing was used to identify differentially expressed genes (DEGs), and bioinformatics analysis identified candidate molecules that may be related to OSCC radiotherapy. RESULTS Two isogenic radioresistant cell lines for OSCC were successfully established. The radioresistant cells displayed a radioresistant phenotype when compared to the parental cells. Two hundred and sixty DEGs were co-expressed in SCC9-RR and CAL27-RR, and thirty-eight DEGs were upregulated or downregulated in both cell lines. The associations between the overall survival (OS) of OSCC patients and the identified genes were analyzed using data from the Cancer Genome Atlas (TCGA) database. A total of six candidate genes (KCNJ2, CLEC18C, P3H3, PIK3R3, SERPINE1, and TMC8) were closely associated with prognosis. CONCLUSION This study demonstrated the utility of constructing isogenic cell models to investigate the molecular changes associated with radioresistance. Six genes were identified based on the data from the radioresistant cells that may be potential targets in the treatment of OSCC.
Collapse
Affiliation(s)
- Junhong Huang
- College of Life Science, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qingzhe Meng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154000, China
| | - Rong Liu
- College of Life Science, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yahui Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zihui Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Chaojie Wanyan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinjie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jianhua Wei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Wang B, Gu B, Zhang T, Li X, Wang N, Ma C, Xiang L, Wang Y, Gao L, Yu Y, Song K, He P, Wang Y, Zhu J, Chen H. Good or bad: Paradox of plasminogen activator inhibitor 1 (PAI-1) in digestive system tumors. Cancer Lett 2023; 559:216117. [PMID: 36889376 DOI: 10.1016/j.canlet.2023.216117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The fibrinolytic system is involved in many physiological functions, among which the important members can interact with each other, either synergistically or antagonistically to participate in the pathogenesis of many diseases. Plasminogen activator inhibitor 1 (PAI-1) acts as a crucial element of the fibrinolytic system and functions in an anti-fibrinolytic manner in the normal coagulation process. It inhibits plasminogen activator, and affects the relationship between cells and extracellular matrix. PAI-1 not only involved in blood diseases, inflammation, obesity and metabolic syndrome but also in tumor pathology. Especially PAI-1 plays a different role in different digestive tumors as an oncogene or cancer suppressor, even a dual role for the same cancer. We term this phenomenon "PAI-1 paradox". PAI-1 is acknowledged to have both uPA-dependent and -independent effects, and its different actions can result in both beneficial and adverse consequences. Therefore, this review will elaborate on PAI-1 structure, the dual value of PAI-1 in different digestive system tumors, gene polymorphisms, the uPA-dependent and -independent mechanisms of regulatory networks, and the drugs targeted by PAI-1 to deepen the comprehensive understanding of PAI-1 in digestive system tumors.
Collapse
Affiliation(s)
- Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Baohong Gu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tao Zhang
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xuemei Li
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Na Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chenhui Ma
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lin Xiang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yunpeng Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yang Yu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Kewei Song
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Puyi He
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yueyan Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jingyu Zhu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, Gansu, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China; Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Su YH, Wu YZ, Ann DK, Chen JLY, Kuo CY. Obesity promotes radioresistance through SERPINE1-mediated aggressiveness and DNA repair of triple-negative breast cancer. Cell Death Dis 2023; 14:53. [PMID: 36681663 PMCID: PMC9867751 DOI: 10.1038/s41419-023-05576-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Obesity is a risk factor in various types of cancer, including breast cancer. The disturbance of adipose tissue in obesity highly correlates with cancer progression and resistance to standard treatments such as chemo- and radio-therapies. In this study, in a syngeneic mouse model of triple-negative breast cancer (TNBC), diet-induced obesity (DIO) not only promoted tumor growth, but also reduced tumor response to radiotherapy. Serpine1 (Pai-1) was elevated in the circulation of obese mice and was enriched within tumor microenvironment. In vitro co-culture of human white adipocytes-conditioned medium (hAd-CM) with TNBC cells potentiated the aggressive phenotypes and radioresistance of TNBC cells. Moreover, inhibition of both cancer cell autonomous and non-autonomous SERPINE1 by either genetic or pharmacological strategy markedly dampened the aggressive phenotypes and radioresistance of TNBC cells. Mechanistically, we uncovered a previously unrecognized role of SERPINE1 in DNA damage response. Ionizing radiation-induced DNA double-strand breaks (DSBs) increased the expression of SERPINE1 in cancer cells in an ATM/ATR-dependent manner, and promoted nuclear localization of SERPINE1 to facilitate DSB repair. By analyzing public clinical datasets, higher SERPINE1 expression in TNBC correlated with patients' BMI as well as poor outcomes. Elevated SERPINE1 expression and nuclear localization were also observed in radioresistant breast cancer cells. Collectively, we reveal a link between obesity and radioresistance in TNBC and identify SERPINE1 to be a crucial factor mediating obesity-associated tumor radioresistance.
Collapse
Affiliation(s)
- Yong-Han Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - David K Ann
- Department of Diabetes Complications & Metabolism, City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
A Four-Gene Signature Associated with Radioresistance in Head and Neck Squamous Cell Carcinoma Identified by Text Mining and Data Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5693806. [PMID: 36203528 PMCID: PMC9532131 DOI: 10.1155/2022/5693806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Purpose Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer globally, and radiotherapy plays a crucial part in its treatment. This study was designed to identify potential genes related to radiation resistance in HNSCC. Method We first used text mining to obtain common genes related to radiotherapy resistance and HNSCC in published articles. Functional enrichment analyses were conducted to identify the significantly enriched pathways and genes. Protein and protein interactions were performed, and the most significant gene modules were determined; then, genes in the gene modules were validated at transcriptional levels and overall survival. Gene set variation analysis (GSVA) score was calculated, and the association between GSVA score and survival/pathway was estimated. Immune cell infiltration, methylation, and genetic alteration analysis of these genes was conducted in HNSCC patients. Finally, potential sensitive anticancer drugs related to target genes were obtained. Result We identified 583 common genes through text mining. After further validation, a four-gene signature (EPHB2, SPP1, SERPINE1, and VEGFC) was constructed. The patients with higher GSVA scores have a worse prognosis than those with lower GSVA scores. Differences in methylation of these four genes in HNSCC tumor tissue and normal tissue were compared, with higher methylation levels of EBPH2 and SPP1 in normal tissue and higher methylation levels of SERPINE1 in the tumor. Immune cell infiltration revealed that the increased expression of these genes was closely related to the infiltration level of CD4+ T cell, neutrophil, macrophage, and dendritic cell. Thirty drugs, including 22 positively and eight negatively correlated drugs that most correlated with related genes, were available for treating HNSCC. Conclusion In this study, we identified four potential genes as well as corresponding drugs that might be related to radioresistance in HNSCC patients. These candidate genes may provide a promising avenue to further elevate radiotherapy efficacy.
Collapse
|
7
|
Patil S, Linge A, Grosser M, Lohaus F, Gudziol V, Kemper M, Nowak A, Haim D, Tinhofer I, Budach V, Guberina M, Stuschke M, Balermpas P, Rödel C, Schäfer H, Grosu AL, Abdollahi A, Debus J, Ganswindt U, Belka C, Pigorsch S, Combs SE, Boeke S, Zips D, Baretton GB, Baumann M, Krause M, Löck S. Development and validation of a 6-gene signature for the prognosis of loco-regional control in patients with HPV-negative locally advanced HNSCC treated by postoperative radio(chemo)therapy. Radiother Oncol 2022; 171:91-100. [DOI: 10.1016/j.radonc.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
|
8
|
Wiechec E, Matic N, Ali A, Roberg K. Hypoxia induces radioresistance, epithelial‑mesenchymal transition, cancer stem cell‑like phenotype and changes in genes possessing multiple biological functions in head and neck squamous cell carcinoma. Oncol Rep 2022; 47:58. [PMID: 35059742 PMCID: PMC8808704 DOI: 10.3892/or.2022.8269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxia has been linked with increased resistance to treatment in various solid tumors, including head and neck squamous cell carcinoma (HNSCC). The aim of the present study was to identify genes involved in hypoxia‑mediated responses to radiotherapy in HNSCC. A total of three HNSCC cell lines with an epithelial phenotype were selected for this study and cultured under normoxic (21% O2) or hypoxic (1% O2) conditions. The sensitivity of the HNSCC cells to radiotherapy was assessed by a crystal violet assay. Western blotting (for protein expression), cDNA microarrays and reverse transcription‑quantitative PCR (for gene expression) were also applied. Small interfering RNA silencing was used to knock down target genes. The results revealed that hypoxia negatively affected the response of HNSCC cells to radiotherapy. Of note, increased levels of N‑cadherin, vimentin and fibronectin, as well as stem cell‑associated transcription factors, were observed under hypoxia. The microarray analysis revealed a number of hypoxia‑regulated genes that were involved in multiple biological functions. However, downregulation of hypoxia‑regulated genes did not affect sensitivity to radiotherapy of the investigated cell lines. Taken together, the present findings indicated several important pathways and genes that were involved in hypoxia and radiotherapy resistance. It is hypothesized that panels of reported hypoxia‑regulated genes may be useful for the prediction of radiotherapy responses in patients with HNSCC.
Collapse
Affiliation(s)
- Emilia Wiechec
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, 58185 Linköping, Sweden
| | - Natasa Matic
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory; Department of Immune Technology, Lund University, 22100 Lund, Sweden
| | - Karin Roberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
9
|
Yeon M, Kim Y, Pathak D, Kwon E, Kim DY, Jeong MS, Jung HS, Jeoung D. The CAGE-MiR-181b-5p-S1PR1 Axis Regulates Anticancer Drug Resistance and Autophagy in Gastric Cancer Cells. Front Cell Dev Biol 2021; 9:666387. [PMID: 34113619 PMCID: PMC8185229 DOI: 10.3389/fcell.2021.666387] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
Cancer-associated gene (CAGE), a cancer/testis antigen, has been known to promote anticancer drug resistance. Since the underlying mechanisms of CAGE-promoted anticancer drug resistance are poorly understood, we established Anticancer drug-resistant gastric cancer cells (AGSR) to better elucidate possible mechanisms. AGSR showed an increased expression level of CAGE and autophagic flux compared with anticancer drug-sensitive parental gastric cancer cells (AGS cells). AGSR cells showed higher invasion potential, growth rate, tumor spheroid formation, and angiogenic potential than AGS cells. CAGE exerted effects on the response to anticancer drugs and autophagic flux. CAGE was shown to bind to Beclin1, a mediator of autophagy. Overexpression of CAGE increased autophagic flux and invasion potential but inhibited the cleavage of PARP in response to anticancer drugs in CAGE CRISPR–Cas9 cell lines. TargetScan analysis was utilized to predict the binding of miR-302b-5p to the promoter sequences of CAGE, and the results show that miR-302b-5p directly regulated CAGE expression as illustrated by luciferase activity. MiR-302b-5p regulated autophagic flux and the response to anticancer drugs. CAGE was shown to bind the promoter sequences of miR-302b-5p. The culture medium of AGSR cells increased CAGE expression and autophagic flux in AGS cells. ImmunoEM showed CAGE was present in the exosomes of AGSR cells; exosomes of AGSR cells and human recombinant CAGE protein increased CAGE expression, autophagic flux, and resistance to anticancer drugs in AGS cells. MicroRNA array revealed miR-181b-5p as a potential negative regulator of CAGE. MiR-181b-5p inhibitor increased the expression of CAGE and autophagic flux in addition to preventing anticancer drugs from cleaving poly(ADP-ribose) polymerase (PARP) in AGS cells. TargetScan analysis predicted sphingosine 1-phosphate receptor 1 (SIPR1) as a potential target for miR-181b-5p. CAGE showed binding to the promoter sequences of S1PR1. The downregulation or inhibition of S1PR1 led to decreased autophagic flux but enhanced the sensitivity to anticancer drugs in AGSR cells. This study presents a novel role of the CAGE–miR-181b-5p–S1PR1 axis in anticancer drug resistance and autophagy.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
10
|
Mahmood N, Rabbani SA. Fibrinolytic System and Cancer: Diagnostic and Therapeutic Applications. Int J Mol Sci 2021; 22:ijms22094358. [PMID: 33921923 PMCID: PMC8122389 DOI: 10.3390/ijms22094358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from “bench to bedside” due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
| | - Shafaat A. Rabbani
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
- Correspondence:
| |
Collapse
|
11
|
Tzekaki EE, Geromichalos G, Lavrentiadou SN, Tsantarliotou MP, Pantazaki AA, Papaspyropoulos A. Oleuropein is a natural inhibitor of PAI-1-mediated proliferation in human ER-/PR- breast cancer cells. Breast Cancer Res Treat 2021; 186:305-316. [PMID: 33389400 DOI: 10.1007/s10549-020-06054-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Elevated expression of PAI-1 has been widely linked with adverse outcomes in a variety of human cancers, such as breast, gastric and ovarian cancers, rendering PAI-1 a prognostic biomarker. As a result, several chemical inhibitors are currently being developed against PAI-1; however, the clinical setting where they might confer survival benefits has not yet been elucidated. METHODS RNA sequencing data analysis from the TCGA/GTEx cancer portals (n = 3607 samples). In silico molecular docking analyses to predict functional macromolecule interactions. ER-/PR- (MDA-MB-231) and ER+/PR+ (MCF-7) breast cancer cell lines implemented to assess the effect of oleuropein as a natural inhibitor of PAI-1-mediated oncogenic proliferation. RESULTS We show that high PAI-1 levels inversely correlate with ER and PR expressions in a wide panel of estrogen/progesterone-responsive human malignancies. By implementing an in silico molecular docking analysis, we identify oleuropein, a phenolic component of olive oil, as a potent PAI-1-binding molecule displaying increased affinity compared to the other olive oil constituents. We demonstrate that EVOO or oleuropein treatment alone may act as a natural PAI-1 inhibitor by incrementally destabilising PAI-1 levels selectively in ER-/PR- breast cancer cells, accompanied by downstream caspase activation and cell growth inhibition. In contrast, ER+/PR+ breast cancer cells, where PAI-1 expression is absent or low, do not adequately respond to treatment. CONCLUSIONS Our study demonstrates an inverse correlation between PAI-1 and ESR1/PGR levels, as well as overall patient survival in estrogen/progesterone-responsive human tumours. With a focus on breast cancer, our data identify oleuropein as a natural PAI-1 inhibitor and suggest that oleuropein-mediated PAI-1 destabilisation may confer clinical benefit only in ER-/PR- tumours.
Collapse
Affiliation(s)
- Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Sophia N Lavrentiadou
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria P Tsantarliotou
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Angelos Papaspyropoulos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
12
|
Upregulation of Plasminogen Activator Inhibitor-1 in Irradiated Recipient Arteries and Veins from Free Tissue Transfer Reconstruction in Cancer Patients. Mediators Inflamm 2018; 2018:4058986. [PMID: 30402041 PMCID: PMC6193344 DOI: 10.1155/2018/4058986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Clinical studies have shown that radiotherapy can induce vascular disease at the site of exposure but is usually not clinically evident until years after treatment. We have studied irradiated human arteries and veins to better understand the underlying biology in search of future treatments. The aim was to investigate whether radiotherapy contributed to a sustained expression of plasminogen activator inhibitor-1 (PAI-1) in human arteries and veins. Methods Irradiated arteries and veins were harvested, together with unirradiated control vessels, from patients undergoing free tissue transfer reconstruction at a median time of 90 weeks [5–650] following radiation exposure. Differential gene expression of PAI-1 was analysed, together with immunohistochemistry (IHC) and immunofluorescence (IF). Results PAI-1 gene expression was increased in both arteries (p = 0.012) and veins (p < 0.001) in irradiated compared to unirradiated control vessels. IHC and IF indicated that cells expressing PAI-1 were located in the adventitia of both arteries and veins and colocalized with cells positive for CD68, CD45, and α-SMA in arteries and with CD45 and α-SMA in veins. Conclusion The current study shows a sustained upregulation of PAI-1 in both arteries and veins after exposure to ionizing radiation, indicating a chronic inflammation mainly in the adventitia. We believe that the results contribute to further understanding of radiation-induced vascular disease, where targeting PAI-1 may be a potential treatment.
Collapse
|
13
|
miR-34a exerts as a key regulator in the dedifferentiation of osteosarcoma via PAI-1-Sox2 axis. Cell Death Dis 2018; 9:777. [PMID: 29991717 PMCID: PMC6039486 DOI: 10.1038/s41419-018-0778-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone cancer with severe chromosomal abnormalities and genetic aberrations. Our previous work reported the dedifferentiation of OS, which is related to poor prognosis. However, the molecular mechanism that regulates OS dedifferentiation is still a subject of exploration. Emerging evidence has suggested that microRNAs (miRNAs) are associated with the pathogenesis of OS and could potentially be developed for use as diagnostic biomarkers and therapeutic strategies. In the present study, we intended to illustrate the role of miR-34a in the dedifferentiation of OS. Upregulation of miR-34a was observed while OS cells were induced into stem-like phenotype. Notably, inhibition of miR-34a could promote the reprogramming transition of OS. Further exploration on the downstream network of miR-34a identified that blocking plasminogen activator inhibitor-1 (PAI-1) expression could restrain OS dedifferentiation into cancer stem-like cells by downregulating SRY-related-HMG box (Sox) 2. We also showed that Sox2 overexpression rescued the suppression phenotype driven by PAI-1 inhibition. Conversely, PAI-1 inhibitor (PAI-039) could suppress the upregulation of Sox2 expression caused by miR-34a inhibition. Be applying bone extracellular matrix (BEM)-OS models, we demonstrated the phenotypic heterogeneity of OS cells, consistent with a strong concordance between PAI-1 and Sox2 expression levels. Taken together, our findings proved miR-34a to be a bona fide suppressor involved in the regulation of OS dedifferentiation. Targeting miR-34a or its direct target PAI-1 could offer new strategies for OS treatment.
Collapse
|
14
|
Plasminogen activator inhibitor-1 in cancer research. Biomed Pharmacother 2018; 105:83-94. [PMID: 29852393 DOI: 10.1016/j.biopha.2018.05.119] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
[Despite as a major inhibitor of urokinase (uPA), paradoxically,] Plasminogen activator inhibitor-1 (PAI-1) has been validated to be highly expressed in various types of tumor biopsy tissues or plasma compared with controls based on huge clinical data bases analysis, more importantly, PAI-1 alone or in conjunction with uPA have been identified as prognostic for disease progression and relapse in certain cancer types. particularly in breast cancer. In addition to play important roles in cell adhesion, migration and invasion, PAI-1 has been reported to induce tumor vascularization and thus promote cell dissemination and tumor metastasis. Furthermore, there are many tumor promoting factors involved in the modulation of PAI-1 expression and activity, which will strengthen the pro-tumorigenic roles of PAI-1. Undoubtedly, PAI-1 may be a promising target for therapeutic intervention of specific cancer treatment. In fact, some PAI-1 inhibitors are currently being evaluated in cancer therapy, which may be developed to new antitumor agents in the future.
Collapse
|
15
|
uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget 2018; 7:57351-57366. [PMID: 27385000 PMCID: PMC5302994 DOI: 10.18632/oncotarget.10344] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
There is strong evidence supporting the role of the plasminogen activator system in head and neck squamous cell carcinoma (HNSCC), particularly of its uPA (urokinase plasminogen activator) / uPAR (urokinase plasminogen activator receptor) and SERPINE1 components. Overexpression of uPA/uPAR and SERPINE1 enhances tumor cell migration and invasion and plays a key role in metastasis development, conferring poor prognosis. The apparent paradox of uPA/uPAR and its inhibitor SERPINE1 producing similar effects is solved by the identification of SERPINE1 activated signaling pathways independent of uPA inhibition. Both uPA/uPAR and SERPINE1 are directly linked to the induction of epithelial-to-mesenchymal transition, the acquisition of stem cell properties and resistance to antitumor agents. The aim of this review is to provide insight on the deregulation of these proteins in all these processes. We also summarize their potential value as prognostic biomarkers or potential drug targets in HNSCC patients. Concomitant overexpression of uPA/uPAR and SERPINE1 is associated with a higher risk of metastasis and could be used to identify patients that would benefit from an adjuvant treatment. In the future, the specific inhibitors of uPA/uPAR and SERPINE1, which are still under development, could be used to design new therapeutic strategies in HNSCCs.
Collapse
|
16
|
Kugaevskaya E, Gureeva T, Timoshenko O, Solovyeva N. The urokinase-type plasminogen activator system and its role in tumor progression. ACTA ACUST UNITED AC 2018; 64:472-486. [DOI: 10.18097/pbmc20186406472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the multistage process of carcinogenesis, the key link in the growth and progression of the tumor is the invasion of malignant cells into normal tissue and their distribution and the degree of destruction of tissues. The most important role in the development of these processes is played by the system of urokinase-type plasminogen activator (uPA system), which consists of several components: serine proteinase – uPA, its receptor – uPAR and its two endogenous inhibitors – PAI-1 and PAI-2. The components of the uPA system are expressed by cancer cells to a greater extent than normal tissue cells. uPA converts plasminogen into broad spectrum, polyfunctional protease plasmin, which, in addition to the regulation of fibrinolysis, can hydrolyze a number of components of the connective tissue matrix (СTM), as well as activate the zymogens of secreted matrix metalloproteinases (MMР) – pro-MMР. MMРs together can hydrolyze all the main components of the СTM, and thus play a key role in the development of invasive processes, as well as to perform regulatory functions by activating and releasing from STM a number of biologically active molecules that are involved in the regulation of the main processes of carcinogenesis. The uPA system promotes tumor progression not only through the proteolytic cascade, but also through uPAR, PAI-1 and PAI-2, which are involved in both the regulation of uPA/uPAR activity and are involved in proliferation, apoptosis, chemotaxis, adhesion, migration and activation of epithelial-mesenchymal transition pathways. All of the above processes are aimed at regulating invasion, metastasis and angiogenesis. The components of the uPA system are used as prognostic and diagnostic markers of many cancers, as well as serve as targets for anticancer therapy.
Collapse
Affiliation(s)
| | - T.A. Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|
17
|
Brøndum L, Eriksen JG, Singers Sørensen B, Mortensen LS, Toustrup K, Overgaard J, Alsner J. Plasma proteins as prognostic biomarkers in radiotherapy treated head and neck cancer patients. Clin Transl Radiat Oncol 2017; 2:46-52. [PMID: 29658000 PMCID: PMC5893530 DOI: 10.1016/j.ctro.2017.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023] Open
Abstract
Background Blood-based protein biomarkers can be a useful tool as pre-treatment prognostic markers, as they can reflect both variations in the tumor microenvironment and the host immune response. We investigated the influence of a panel of plasma proteins for the development of any failure defined as recurrent disease in the T-, N-, or M-site in HNSCC. Methods We used a multiplex bead-based approach to analyze 19 proteins in 86 HNSCC patients and 15 healthy controls. We evaluated the associations between the biomarkers, loco-regional failure, failure in the T-, N-, or M-site, overall survival (OS), p16 status, and hypoxia. Results In 41 p16 positive oropharynx cancer patients we identified a profile of biomarkers consisting of upregulation of IL-2, IL-4, IL-6, IL-8, eotaxin, GRO-a, and VEGF and downregulation of VEGFR-1 and VEGFR-2 with a significantly reduced risk of failure (p < 0.01). None of the individual proteins were associated with outcome. Conclusion The identified plasma profile potentially reflects an activated immune response in a subgroup of the p16 positive patients.
Collapse
Affiliation(s)
- Line Brøndum
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kasper Toustrup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Brøndum L, Sørensen BS, Eriksen JG, Mortensen LS, Lønbro S, Overgaard J, Alsner J. An evaluation of multiplex bead-based analysis of cytokines and soluble proteins in archived lithium heparin plasma, EDTA plasma and serum samples. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:601-611. [PMID: 27666533 DOI: 10.1080/00365513.2016.1230882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the usability of archived plasma and serum by multiplex (Luminex) analysis of circulating proteins (analytes) by evaluating the day to day variation, the effect of several freeze-thaw cycles, and the influence of the media and choice of anticoagulant. METHODS Nineteen analytes in plasma and serum from 86 head and neck cancer patients and 33 controls were evaluated: EGFR, leptin, OPN, VEGFR-1, VEGFR-2, IL-2, IL-13, PDGF-bb, TNF, PAI-1, SDF-1a, IL-4, IL-6, IL-8, eotaxin, G-CSF, VEGF, GRO-a, and HGF. RESULTS The correlation between measurements of the same samples analyzed on different dates was reasonable. However, samples run on different dates could exhibit different absolute values. The 75th percentile of the fold differences for samples run on different dates was 2.2. No significant difference was found between one and four freeze-thaw cycles (except for HGF), and the correlation was high. We found significant differences in mean concentrations of the majority of analytes in different media and with different anticoagulants. Only the following analytes did not show difference in mean concentrations: EDTA plasma vs. serum: leptin and VEGFR-2, LH plasma vs. serum: IL-2, IL-13, and VEGF, LH plasma levels vs. EDTA plasma: IL-2 and IL-4. CONCLUSION Stored serum, LH plasma, and EDTA plasma from clinical trials can be used for analysis of circulating cytokines and proteins. Variations in measurements occur, but are within reasonable ranges. The optimal type of media depends on the analytes, as different analytes have low number of measurements below the lower limit of quantification and higher dynamic ranges in different media.
Collapse
Affiliation(s)
- Line Brøndum
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Brita Singers Sørensen
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | | | | | - Simon Lønbro
- d Department of Public Health, Section for Sport Science , Aarhus University , Aarhus , Denmark
| | - Jens Overgaard
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jan Alsner
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
19
|
Weng JH, Yu CC, Lee YC, Lin CW, Chang WW, Kuo YL. miR-494-3p Induces Cellular Senescence and Enhances Radiosensitivity in Human Oral Squamous Carcinoma Cells. Int J Mol Sci 2016; 17:ijms17071092. [PMID: 27399693 PMCID: PMC4964468 DOI: 10.3390/ijms17071092] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of head and neck. Although radiotherapy is used for OSCC treatment, the occurrence of radioresistant cancer cells limits its efficiency. MicroRNAs (miRNAs) are non-coding RNAs with lengths of 18–25 base pairs and known to be involved in carcinogenesis. We previously demonstrated that by targeting B lymphoma Mo-MLV insertion region 1 homolog (Bmi1), miR-494-3p functions as a putative tumor suppressor miRNA in OSCC. In this study, we further discovered that miR-494-3p could enhance the radiosensitivity of SAS OSCC cells and induce cellular senescence. The overexpression of miR-494-3p in SAS cells increased the population of senescence-associated β-galactosidase positive cells, the expression of p16INK4a and retinoblastoma 1 (RB1), as well as downregulated Bmi1. The knockdown of Bmi1 by lentiviral-mediated delivery of specific short hairpin RNAs (shRNAs) also enhanced the radiosensitivity of SAS cells and the activation of the senescence pathway. Furthermore, the inverse correlation between Bmi1 and miR-494-3p expression was observed among OSCC tissues. Results suggest that miR-494-3p could increase the radiosensitivity of OSCC cells through the induction of cellular senescence caused by the downregulation of Bmi1.
Collapse
Affiliation(s)
- Jui-Hung Weng
- Department of Nuclear Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Oral Science, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Cheng-Wei Lin
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Wen-Wei Chang
- School of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Yu-Liang Kuo
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
20
|
Wu Y, Liu Y, Dong Y, Vadgama J. Diabetes-associated dysregulated cytokines and cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2016; 3:370-378. [PMID: 29930868 PMCID: PMC6007890 DOI: 10.15761/icst.1000173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epidemiological data demonstrate that patients with diabetes have an augmented risk of developing various types of cancers, accompanied by higher mortality. A number of mechanisms for this connection have been hypothesized, such as insulin resistance, hyperinsulinemia, hyperglycemia, and increased inflammatory processes. Apart from these potential mechanisms, several diabetes-associated dysregulated cytokines might be implicated in the link between diabetes and cancer. In fact, some inflammatory cytokines, e.g. TNF-α, IL-6 and leptin, have been revealed to play important roles in both initiation and progression of tumor. Here, we depict the role of these cytokines in key events of carcinogenesis and cancer development, including their capability to induce oxidative stress, inflammation, their participation in epithelial mesenchymal transition (EMT), angiogenesis, and metastasis. Finally, we will also highlight the existing knowledge in terms of the involvement of these cytokines in different cancer types and comment on potential significances for future clinical applications.
Collapse
Affiliation(s)
- Yong Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, USA
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Yanjun Liu
- Division of Endocrinology, Charles R. Drew University of Medicine & Sciences, UCLA School of Medicine, Los Angeles, USA
| | - Yunzhou Dong
- Vascular Biology Program BCH3137, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Jay Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, USA
- David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|