1
|
Geng X, Azarbarzin S, Yang Z, Lapidus RG, Fan X, Teng Y, Mehra R, Cullen KJ, Dan H. Evaluation of co‑inhibition of ErbB family kinases and PI3K for HPV‑negative head and neck squamous cell carcinoma. Oncol Rep 2025; 53:38. [PMID: 39886949 PMCID: PMC11800064 DOI: 10.3892/or.2025.8871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/29/2024] [Indexed: 02/01/2025] Open
Abstract
The ErbB/HER family of protein‑tyrosine kinases and PI3K represent crucial targets in the treatment of head and neck squamous cell carcinoma (HNSCC). A combination therapy of afatinib (ErbB inhibitor) and copanlisib (PI3K inhibitor), both Food and Drug Administration‑approved kinase inhibitors, can suppress the growth of human papillomavirus (HPV)‑positive HNSCC. The current study further evaluated the efficacy and clinical potential of this combination therapy for the treatment of HPV‑negative HNSCC in vitro and in vivo. Sulforhodamine B cell viability assay and Annexin V/propidium iodide staining demonstrated that this combination treatment markedly enhanced inhibition of cell viability and reduced cell survival when compared with treatment with either inhibitor alone in two HPV‑negative HNSCC cell lines. Notably, this combination also led to significant inhibition of xenograft tumor growth in mice, without any apparent effects on body weight. Western blot analysis found that copanlisib alone effectively blocked PI3K/Akt signaling but caused upregulation of HER2 and HER3 phosphorylation, as reported in other types of cancer. However, the combination of copanlisib and afatinib completely blocked phosphorylation of the ErbB family (including HER3) and Akt, while also increasing apoptosis. In conclusion, these results suggested that co‑targeting the ErbB family kinases and PI3K using a combination treatment of afatinib and copanlisib may have clinical potential for patients with HPV‑negative HNSCC.
Collapse
Affiliation(s)
- Xinyan Geng
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shirin Azarbarzin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rena G. Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kevin J. Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Iida M, McDaniel NK, Kostecki KL, Welke NB, Kranjac CA, Liu P, Longhurst C, Bruce JY, Hong S, Salgia R, Wheeler DL. AXL regulates neuregulin1 expression leading to cetuximab resistance in head and neck cancer. BMC Cancer 2022; 22:447. [PMID: 35461210 PMCID: PMC9035247 DOI: 10.1186/s12885-022-09511-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The receptor tyrosine kinase (RTK) epidermal growth factor receptor (EGFR) is overexpressed and an important therapeutic target in Head and Neck cancer (HNC). Cetuximab is currently the only EGFR-targeting agent approved by the FDA for treatment of HNC; however, intrinsic and acquired resistance to cetuximab is a major problem in the clinic. Our lab previously reported that AXL leads to cetuximab resistance via activation of HER3. In this study, we investigate the connection between AXL, HER3, and neuregulin1 (NRG1) gene expression with a focus on understanding how their interdependent signaling promotes resistance to cetuximab in HNC. METHODS Plasmid or siRNA transfections and cell-based assays were conducted to test cetuximab sensitivity. Quantitative PCR and immunoblot analysis were used to analyze gene and protein expression levels. Seven HNC patient-derived xenografts (PDXs) were evaluated for protein expression levels. RESULTS We found that HER3 expression was necessary but not sufficient for cetuximab resistance without AXL expression. Our results demonstrated that addition of the HER3 ligand NRG1 to cetuximab-sensitive HNC cells leads to cetuximab resistance. Further, AXL-overexpressing cells regulate NRG1 at the level of transcription, thereby promoting cetuximab resistance. Immunoblot analysis revealed that NRG1 expression was relatively high in cetuximab-resistant HNC PDXs compared to cetuximab-sensitive HNC PDXs. Finally, genetic inhibition of NRG1 resensitized AXL-overexpressing cells to cetuximab. CONCLUSIONS The results of this study indicate that AXL may signal through HER3 via NRG1 to promote cetuximab resistance and that targeting of NRG1 could have significant clinical implications for HNC therapeutic approaches.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Nellie K McDaniel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Kourtney L Kostecki
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Noah B Welke
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Carlene A Kranjac
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA
| | - Peng Liu
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Colin Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Justine Y Bruce
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, WI, USA
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, Korea
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Deric L Wheeler
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, 1111 highland Ave, WIMR 3159, Madison, WI, 53705, USA.
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
3
|
Deuss E, Gößwein D, Gül D, Zimmer S, Foersch S, Eger CS, Limburg I, Stauber RH, Künzel J. Growth Factor Receptor Expression in Oropharyngeal Squamous Cell Cancer: Her1-4 and c-Met in Conjunction with the Clinical Features and Human Papillomavirus (p16) Status. Cancers (Basel) 2020; 12:cancers12113358. [PMID: 33202816 PMCID: PMC7697064 DOI: 10.3390/cancers12113358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Growth factor expression is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Targeted therapy has a limited effect on the treatment of advanced stages due to evolving resistance mechanisms. The aim of this study was to assess the distribution of growth factor receptors in oropharyngeal squamous cell cancer (OPSCC) and evaluate their role in the context of the human papillomavirus status, prognosis and possible relevance for targeted therapy. Tissue microarrays of 78 primary OPSCC, 35 related lymph node metastasis, 6 distant metastasis and 9 recurrent tumors were manufactured to evaluate the expression of human epidermal growth factor receptor (EGFR/erbB/Her)1–4 and c-Met by immunohistochemistry. EGFR and c-Met are relevant negative prognostic factors especially in noxae-induced OPSCC. Thus, dual targeting of EGFR and c-Met could be a promising prospective target in OPSCC treatment. Frequent coexpression of assessed receptors represents a possible intrinsic resistance mechanism in targeted therapy. Abstract This study aimed to assess the distribution of growth factor receptors in oropharyngeal squamous cell cancer (OPSCC) and evaluate their role in the context of human papillomavirus (HPV) status, prognosis and potential relevance for targeted therapy. The protein expression of human epidermal growth factor receptor (Her)1–4 and c-Met were retrospectively assessed using semiquantitative immunohistochemistry on tissue microarrays and analyzed for correlations as well as differences in the clinicopathological criteria. Her1–4 and c-met were overexpressed compared to normal mucosa in 46%, 4%, 17%, 27% and 23%, respectively. Interestingly, most receptors were coexpressed. Her1 and c-Met were inversely correlated with p16 (p = 0.04; p = 0.02). Her2 and c-Met were associated with high tobacco consumption (p = 0.016; p = 0.04). High EGFR, Her3, Her4 and c-Met expression were associated with worse overall and disease-free survival (p ≤ 0.05). Furthermore, EGFR and c-Met expression showed raised hazard ratios of 2.53 (p = 0.02; 95% CI 1.24–5.18) and 2.45 (p = 0.02; 95% CI 1.13–5.35), respectively. Her4 was expressed less in distant metastases than in corresponding primary tumors and was correlated to a higher T category. EGFR and c-Met are relevant negative prognostic factors in OPSCC, independent of known clinicopathological parameters. We suggest dual targeting of EGFR and c-Met as a promising strategy for OPSCC treatment.
Collapse
Affiliation(s)
- Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital, 45147 Essen, Germany
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
- Correspondence: ; Tel.: +49-0-177-8482208
| | - Dorothee Gößwein
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center, 55131 Mainz, Germany; (S.Z.); (S.F.)
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center, 55131 Mainz, Germany; (S.Z.); (S.F.)
| | - Claudia S. Eger
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Ivonne Limburg
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Julian Künzel
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
- Ear, Nose and Throat Department, University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
4
|
SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC). Sci Rep 2020; 10:8615. [PMID: 32451408 PMCID: PMC7248088 DOI: 10.1038/s41598-020-65077-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
The Special AT-rich sequence binding protein 1 (SATB1) is a genome organizer protein that controls gene expression of numerous genes by regulating chromatin architecture and targeting chromatin-remodeling/-modifying enzymes onto specific chromatin regions. SATB1 is overexpressed in various tumors. In head and neck squamous cell carcinoma (HNSCC), SATB1 upregulation is correlated with TNM classification, metastasis, poor prognosis and reduced overall survival. In this paper, we comprehensively analyze cellular and molecular effects of SATB1 in a large set of primary cell lines from primary HNSCC or metastases, using RNAi-mediated knockdown in vitro and, therapeutically, in tumor xenograft mouse models in vivo. In a series of 15 cell lines, major differences in SATB1 levels are observed. In various 2-D and 3-D assays, growth inhibition upon efficient siRNA-mediated SATB1 knockdown depends on the cell line rather than initial SATB1 levels. Inhibitory effects are found to be based on cell cycle deceleration, apoptosis induction, decreased HER3 and Heregulin A&B expression, and effects on EMT genes. In vivo, systemic treatment of tumor xenograft-bearing mice with siRNAs formulated in polymeric nanoparticles inhibits tumor growth of two HNSCC xenograft models, resulting from therapeutic SATB1 reduction and concomitant decrease of proliferation and induction of apoptosis. In conclusion, SATB1 represents a promising target in HNSCC, affecting crucial cellular processes and molecular pathways.
Collapse
|
5
|
Steuer CE, Griffith CC, Nannapaneni S, Patel MR, Liu Y, Magliocca KR, El-Deiry MW, Cohen C, Owonikoko TK, Shin DM, Chen ZG, Saba NF. A Correlative Analysis of PD-L1, PD-1, PD-L2, EGFR, HER2, and HER3 Expression in Oropharyngeal Squamous Cell Carcinoma. Mol Cancer Ther 2018; 17:710-716. [PMID: 29440293 DOI: 10.1158/1535-7163.mct-17-0504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 12/08/2017] [Indexed: 01/10/2023]
Abstract
We explored potential associations of the PD-1/PD-L1/PD-L2 pathway with clinical characteristics, outcome, and expression of EGFR, HER2, HER3 in oropharyngeal squamous cell carcinoma (OPSCC) using an institutional database. Protein expression was assessed by IHC on tissue microarray sections (EGFR, HER2, HER3) or whole tissue sections (PD-1/PD-L1/PD-L2). Expression of EGFR, HER2, HER3, PD-L1, and PD-L2 was quantified on tumor cells. Maximum density of PD-1 positive lymphocytes was measured on a scale of 0 to 4 within the tumor mass and peritumoral stroma. Associations between biomarkers and patient outcomes were tested using descriptive and inferential statistics, logistic regression, and Cox proportional hazards models. We analyzed tissue samples from 97 OPSCC cases: median age 59 years, p16+ (71%), male (83.5%), never smokers (18%), stage 3 to 4 disease (77%). Twenty-five percent of cases were PD-L1 positive. The proportion of PD-L1+ tumors was higher in p16+ (29%) than p16- OPSCC (11%, P = 0.047). There was no correlation between PD-L1, PD-L2, PD-1, EGFR, HER2, or HER3 expression. Positive PD-L1 status correlated with advanced nodal disease on multivariate analysis (OR 5.53; 95% CI, 1.06-28.77; P = 0.042). Negative PD-L2 expression was associated with worse survival (HR 3.99; 95% CI, 1.37-11.58; P = 0.011) in p16- OPSCC. Lower density of PD-1 positive lymphocytes in peritumoral stroma was associated with significantly increased risk of death on multivariate analysis (HR 3.17; 95% CI, 1.03-9.78; P = 0.045) after controlling for prognostic factors such as stage and p16 status. PD-L1 expression on tumor cells correlates with p16 status and advanced nodal status in OPSCC. PD-1 positive lymphocytes in peritumoral stroma serve as an independent prognostic factor for overall survival. Mol Cancer Ther; 17(3); 710-6. ©2018 AACR.
Collapse
Affiliation(s)
- Conor E Steuer
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Christopher C Griffith
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mihir R Patel
- Department of Otolaryngology-Head and Neck Surgery, Emory University Hospital Midtown, Atlanta, Georgia
| | - Yuan Liu
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Kelly R Magliocca
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Mark W El-Deiry
- Department of Otolaryngology-Head and Neck Surgery, Emory University Hospital Midtown, Atlanta, Georgia
| | - Cynthia Cohen
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|