1
|
Weiler S, Nairz M. TAM-ing the CIA-Tumor-Associated Macrophages and Their Potential Role in Unintended Side Effects of Therapeutics for Cancer-Induced Anemia. Front Oncol 2021; 11:627223. [PMID: 33842333 PMCID: PMC8027083 DOI: 10.3389/fonc.2021.627223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer-induced anemia (CIA) is a common consequence of neoplasia and has a multifactorial pathophysiology. The immune response and tumor treatment, both intended to primarily target malignant cells, also affect erythropoiesis in the bone marrow. In parallel, immune activation inevitably induces the iron-regulatory hormone hepcidin to direct iron fluxes away from erythroid progenitors and into compartments of the mononuclear phagocyte system. Moreover, many inflammatory mediators inhibit the synthesis of erythropoietin, which is essential for stimulation and differentiation of erythroid progenitor cells to mature cells ready for release into the blood stream. These pathophysiological hallmarks of CIA imply that the bone marrow is not only deprived of iron as nutrient but also of erythropoietin as central growth factor for erythropoiesis. Tumor-associated macrophages (TAM) are present in the tumor microenvironment and display altered immune and iron phenotypes. On the one hand, their functions are altered by adjacent tumor cells so that they promote rather than inhibit the growth of malignant cells. As consequences, TAM may deliver iron to tumor cells and produce reduced amounts of cytotoxic mediators. Furthermore, their ability to stimulate adaptive anti-tumor immune responses is severely compromised. On the other hand, TAM are potential off-targets of therapeutic interventions against CIA. Red blood cell transfusions, intravenous iron preparations, erythropoiesis-stimulating agents and novel treatment options for CIA may interfere with TAM function and thus exhibit secondary effects on the underlying malignancy. In this Hypothesis and Theory, we summarize the pathophysiological hallmarks, clinical implications and treatment strategies for CIA. Focusing on TAM, we speculate on the potential intended and unintended effects that therapeutic options for CIA may have on the innate immune response and, consequently, on the course of the underlying malignancy.
Collapse
Affiliation(s)
- Stefan Weiler
- National Poisons Information Centre, Tox Info Suisse, Associated Institute of the University of Zurich, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Eidgenossische Technische Hochschule Zurich, Zurich, Switzerland
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Guellec J, Elbahnsi A, Le Tertre M, Uguen K, Gourlaouen I, Férec C, Ka C, Callebaut I, Le Gac G. Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A. FASEB J 2019; 33:14625-14635. [PMID: 31690120 DOI: 10.1096/fj.201901857r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ferroportin 1 (FPN1) is a major facilitator superfamily transporter that is essential for proper maintenance of human iron homeostasis at the systemic and cellular level. FPN1 dysfunction leads to the progressive accumulation of iron in reticuloendothelial cells, causing hemochromatosis type 4A (or ferroportin disease), an autosomal dominant disorder that displays large phenotypic heterogeneity. Although crystal structures have unveiled the outward- and inward-facing conformations of the bacterial homolog Bdellovibrio bacteriovorus Fpn (or Bd2019) and calcium has recently been identified as an essential cofactor, our molecular understanding of the iron transport mechanism remains incomplete. Here, we used a combination of molecular modeling, molecular dynamics simulations, and Ala site-directed mutagenesis, followed by complementary in vitro functional analyses, to explore the structural architecture of the human FPN1 intracellular gate. We reveal an interdomain network that involves 5 key amino acids and is likely very important for stability of the iron exporter facing the extracellular milieu. We also identify inter- and intradomain interactions that rely on the 2 Asp84 and Asn174 critical residues and do not exist in the bacterial homolog. These interactions are thought to play an important role in the modulation of conformational changes during the transport cycle. We interpret these results in the context of hemochromatosis type 4A, reinforcing the idea that different categories of loss-of-function mutations exist. Our findings provide an unprecedented view of the human FPN1 outward-facing structure and the particular function of the so-called "gating residues" in the mechanism of iron export.-Guellec, J., Elbahnsi, A., Le Tertre, M., Uguen, K., Gourlaouen, I., Férec, C., Ka, C., Callebaut, I., Le Gac, G. Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A.
Collapse
Affiliation(s)
- Julie Guellec
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Association Gaetan Saleun, Brest, France
| | - Ahmad Elbahnsi
- Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - Marlène Le Tertre
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and
| | - Kévin Uguen
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and
| | - Isabelle Gourlaouen
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France
| | - Claude Férec
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Association Gaetan Saleun, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and
| | - Chandran Ka
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and.,Laboratory of Excellence Laboratory of Excellence (GR-Ex), Paris, France
| | - Isabelle Callebaut
- Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - Gérald Le Gac
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and.,Laboratory of Excellence Laboratory of Excellence (GR-Ex), Paris, France
| |
Collapse
|
3
|
Vlasveld LT, Janssen R, Bardou-Jacquet E, Venselaar H, Hamdi-Roze H, Drakesmith H, Swinkels DW. Twenty Years of Ferroportin Disease: A Review or An Update of Published Clinical, Biochemical, Molecular, and Functional Features. Pharmaceuticals (Basel) 2019; 12:ph12030132. [PMID: 31505869 PMCID: PMC6789780 DOI: 10.3390/ph12030132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Iron overloading disorders linked to mutations in ferroportin have diverse phenotypes in vivo, and the effects of mutations on ferroportin in vitro range from loss of function (LOF) to gain of function (GOF) with hepcidin resistance. We reviewed 359 patients with 60 ferroportin variants. Overall, macrophage iron overload and low/normal transferrin saturation (TSAT) segregated with mutations that caused LOF, while GOF mutations were linked to high TSAT and parenchymal iron accumulation. However, the pathogenicity of individual variants is difficult to establish due to the lack of sufficiently reported data, large inter-assay variability of functional studies, and the uncertainty associated with the performance of available in silico prediction models. Since the phenotypes of hepcidin-resistant GOF variants are indistinguishable from the other types of hereditary hemochromatosis (HH), these variants may be categorized as ferroportin-associated HH, while the entity ferroportin disease may be confined to patients with LOF variants. To further improve the management of ferroportin disease, we advocate for a global registry, with standardized clinical analysis and validation of the functional tests preferably performed in human-derived enterocytic and macrophagic cell lines. Moreover, studies are warranted to unravel the definite structure of ferroportin and the indispensable residues that are essential for functionality.
Collapse
Affiliation(s)
- L Tom Vlasveld
- Department of Internal Medicine, Haaglanden MC-Bronovo, 2597AX The Hague, The Netherlands
| | - Roel Janssen
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Edouard Bardou-Jacquet
- Liver Diseases Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud, University Medical Center, P.O. Box 9191, 6500 HB Nijmegen, The Netherlands
| | - Houda Hamdi-Roze
- Molecular Genetics Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Hayashi H, Yano M, Urawa N, Mizutani A, Hamaoka S, Araki J, Kojima Y, Naito Y, Kato A, Tatsumi Y, Kato K. A 10-year Follow-up Study of a Japanese Family with Ferroportin Disease A: Mild Iron Overload with Mild Hyperferritinemia Co-occurring with Hyperhepcidinemia May Be Benign. Intern Med 2018; 57:2865-2871. [PMID: 29780118 PMCID: PMC6207810 DOI: 10.2169/internalmedicine.0481-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This is a 10-year follow-up study of a family with ferroportin disease A. The proband, a 59-year-old man showed no noteworthy findings with the exception of an abnormal iron level. The proband's 90-year-old father showed reduced abilities in gait and cognition; however, with the exception of his iron level, his biochemistry results were almost normal. Brain imaging showed age-matched atrophy and iron deposition. In both patients, the serum levels of ferritin and hepcidin25, and liver computed tomography scores declined over a 10-year period. These changes were mainly due to a habitual change to a low-iron diet. The iron disorder in this family was not associated with major organ damage.
Collapse
Affiliation(s)
- Hisao Hayashi
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Japan
| | - Motoyoshi Yano
- Department of Gastroenterology, Yokkaichi Municipal Hospital, Japan
| | - Naohito Urawa
- Department of Hepatology, Ise Red Cross Hospital, Japan
| | | | - Shima Hamaoka
- Department of Hepatology, Ise Red Cross Hospital, Japan
| | - Jun Araki
- Department of Hepatology, Ise Red Cross Hospital, Japan
| | - Yuji Kojima
- Department of Hepatology, Ise Red Cross Hospital, Japan
| | - Yutaka Naito
- Department of Neurology, Ise Red Cross Hospital, Japan
| | - Ayako Kato
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Japan
| | - Yasuaki Tatsumi
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Japan
| | - Koichi Kato
- Department of Medicine, Aichi-Gakuin University School of Pharmacy, Japan
| |
Collapse
|
5
|
Pietrangelo A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017; 102:1972-1984. [PMID: 29101207 PMCID: PMC5709096 DOI: 10.3324/haematol.2017.170720] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Ferroportin Disease (FD) is an autosomal dominant hereditary iron loading disorder associated with heterozygote mutations of the ferroportin-1 (FPN) gene. It represents one of the commonest causes of genetic hyperferritinemia, regardless of ethnicity. FPN1 transfers iron from the intestine, macrophages and placenta into the bloodstream. In FD, loss-of-function mutations of FPN1 limit but do not impair iron export in enterocytes, but they do severely affect iron transfer in macrophages. This leads to progressive and preferential iron trapping in tissue macrophages, reduced iron release to serum transferrin (i.e. inappropriately low transferrin saturation) and a tendency towards anemia at menarche or after intense bloodletting. The hallmark of FD is marked iron accumulation in hepatic Kupffer cells. Numerous FD-associated mutations have been reported worldwide, with a few occurring in different populations and some more commonly reported (e.g. Val192del, A77D, and G80S). FPN1 polymorphisms also represent the gene variants most commonly responsible for hyperferritinemia in Africans. Differential diagnosis includes mainly hereditary hemochromatosis, the syndrome commonly due to either HFE or TfR2, HJV, HAMP, and, in rare instances, FPN1 itself. Here, unlike FD, hyperferritinemia associates with high transferrin saturation, iron-spared macrophages, and progressive parenchymal cell iron load. Abdominal magnetic resonance imaging (MRI), the key non-invasive diagnostic tool for the diagnosis of FD, shows the characteristic iron loading SSL triad (spleen, spine and liver). A non-aggressive phlebotomy regimen is recommended, with careful monitoring of transferrin saturation and hemoglobin due to the risk of anemia. Family screening is mandatory since siblings and offspring have a 50% chance of carrying the pathogenic mutation.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine II, University of Modena and Reggio Emilia Policlinico, Modena, Italy
| |
Collapse
|
6
|
Oh CK, Park SH, Kim J, Moon Y. Non-mutagenic Suppression of Enterocyte Ferroportin 1 by Chemical Ribosomal Inactivation via p38 Mitogen-activated Protein Kinase (MAPK)-mediated Regulation: EVIDENCE FOR ENVIRONMENTAL HEMOCHROMATOSIS. J Biol Chem 2016; 291:19858-72. [PMID: 27445333 DOI: 10.1074/jbc.m116.722520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
Iron transfer across the basolateral membrane of an enterocyte into the circulation is the rate-limiting step in iron absorption and is regulated by various pathophysiological factors. Ferroportin (FPN), the only known mammalian iron exporter, transports iron from the basolateral surface of enterocytes, macrophages, and hepatocytes into the blood. Patients with genetic mutations in FPN or repeated blood transfusion develop hemochromatosis. In this study, non-mutagenic ribosomal inactivation was assessed as an etiological factor of FPN-associated hemochromatosis in enterocytes. Non-mutagenic chemical ribosomal inactivation disrupted iron homeostasis by regulating expression of the iron exporter FPN-1, leading to intracellular accumulation in enterocytes. Mechanistically, a xenobiotic insult stimulated the intracellular sentinel p38 MAPK signaling pathway, which was positively involved in FPN-1 suppression by ribosomal dysfunction. Moreover, ribosomal inactivation-induced iron accumulation in Caenorhabditis elegans as a simplified in vivo model for gut nutrition uptake was dependent on SEK-1, a p38 kinase activator, leading to suppression of FPN-1.1 expression and iron accumulation. In terms of gene regulation, ribosomal stress-activated p38 signaling down-regulated NRF2 and NF-κB, both of which were positive transcriptional regulators of FPN-1 transcription. This study provides molecular evidence for the modulation of iron bioavailability by ribosomal dysfunction as a potent etiological factor of non-mutagenic environmental hemochromatosis in the gut-to-blood axis.
Collapse
Affiliation(s)
- Chang-Kyu Oh
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, South Korea and
| | - Seong-Hwan Park
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, South Korea and
| | - Juil Kim
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, South Korea and
| | - Yuseok Moon
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University School of Medicine, Yangsan 50612, South Korea and the Medical Research Institute, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
7
|
Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother 2014; 41:213-21. [PMID: 25053935 DOI: 10.1159/000362888] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Collapse
Affiliation(s)
| | - Gérard Waeber
- Service de médecine interne, CHUV, Lausanne, Switzerland
| | | | | | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Service régional vaudois de transfusion sanguine, Epalinges, Switzerland
| |
Collapse
|