1
|
Lichtenstein L, Cheng CW, Bajarwan M, Evans EL, Gaunt HJ, Bartoli F, Chuntharpursat-Bon E, Patel S, Konstantinou C, Futers TS, Reay M, Parsonage G, Moore JB, Bertrand-Michel J, Sukumar P, Roberts LD, Beech DJ. Endothelial force sensing signals to parenchymal cells to regulate bile and plasma lipids. SCIENCE ADVANCES 2024; 10:eadq3075. [PMID: 39331703 PMCID: PMC11430402 DOI: 10.1126/sciadv.adq3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024]
Abstract
How cardiovascular activity interacts with lipid homeostasis is incompletely understood. We postulated a role for blood flow acting at endothelium in lipid regulatory organs. Transcriptome analysis was performed on livers from mice engineered for deletion of the flow-sensing PIEZO1 channel in endothelium. This revealed unique up-regulation of Cyp7a1, which encodes the rate-limiting enzyme for bile synthesis from cholesterol in hepatocytes. Consistent with this effect were increased gallbladder and plasma bile acids and lowered hepatic and plasma cholesterol. Elevated portal fluid flow acting via endothelial PIEZO1 and genetically enhanced PIEZO1 conversely suppressed Cyp7a1. Activation of hepatic endothelial PIEZO1 channels promoted phosphorylation of nitric oxide synthase 3, and portal flow-mediated suppression of Cyp7a1 depended on nitric oxide synthesis, suggesting endothelium-to-hepatocyte coupling via nitric oxide. PIEZO1 variants in people were associated with hepatobiliary disease and dyslipidemia. The data suggest an endothelial force sensing mechanism that controls lipid regulation in parenchymal cells to modulate whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Chew W. Cheng
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Muath Bajarwan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Fiona Bartoli
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Shaili Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | - Charalampos Konstantinou
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | | | - Melanie Reay
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - J. Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Justine Bertrand-Michel
- MetaToul-Lipidomics Facility, INSERM UMR1048, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1297/I2MC, INSERM, Toulouse, France
| | | | - Lee D. Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - David J. Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Colyn L, Alvarez-Sola G, Latasa MU, Uriarte I, Herranz JM, Arechederra M, Vlachogiannis G, Rae C, Pineda-Lucena A, Casadei-Gardini A, Pedica F, Aldrighetti L, López-López A, López-Gonzálvez A, Barbas C, Ciordia S, Van Liempd SM, Falcón-Pérez JM, Urman J, Sangro B, Vicent S, Iraburu MJ, Prosper F, Nelson LJ, Banales JM, Martinez-Chantar ML, Marin JJG, Braconi C, Trautwein C, Corrales FJ, Cubero FJ, Berasain C, Fernandez-Barrena MG, Avila MA. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. J Exp Clin Cancer Res 2022; 41:183. [PMID: 35619118 PMCID: PMC9134609 DOI: 10.1186/s13046-022-02386-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. METHODS Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. RESULTS Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. CONCLUSIONS In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA.
Collapse
Affiliation(s)
- Leticia Colyn
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Gloria Alvarez-Sola
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | | | - Colin Rae
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, UK
| | | | | | - Federica Pedica
- Department of Experimental Oncology, Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, Vita-Salute San Raffaele University, IRCCS San Raffaele Hospital, Milan, Italy
| | - Angeles López-López
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Angeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia University San Pablo CEU, Boadilla del Monte, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | | | - Juan M Falcón-Pérez
- CIBERehd, Madrid, Spain
- Exosomes Laboratory and Metabolomics Platform, CIC bioGUNE-BRTA, Derio, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Jesus Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Gastroenterology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Bruno Sangro
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Hepatology Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Silve Vicent
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Solid Tumors Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERonc, Madrid, Spain
| | - Maria J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Oncohematology Program, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Leonard J Nelson
- Institute of Engineering, School of Engineering, Faraday Building, The University of Edimburgh, Edinburgh, Scotland, UK
| | - Jesus M Banales
- CIBERehd, Madrid, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | | | - Jose J G Marin
- CIBERehd, Madrid, Spain
- Physiology and Pharmacology Department, HEVEPHARM, IBSAL, University of Salamanca, Salamanca, Spain
| | - Chiara Braconi
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Center, Glasgow, UK
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Fernando J Corrales
- CIBERehd, Madrid, Spain
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - F Javier Cubero
- CIBERehd, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain.
- CIBERehd, Madrid, Spain.
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Primary biliary cholangitis (PBC) is characterized by autoimmune damage of intrahepatic bile ducts associated with a loss of tolerance to mitochondrial antigens. PBC etiopathogenesis is intriguing because of different perplexing features, namely: a) although mitochondria are present in all cell types and tissues, the damage is mainly restricted to biliary epithelial cells (BECs); b) despite being an autoimmune disorder, it does not respond to immunosuppressive drugs but rather to ursodeoxycholic acid, a bile salt that induces HCO3- rich choleresis; c) the overwhelming female preponderance of the disease remains unexplained. Here we present an etiopathogenic view of PBC which sheds light on these puzzling facts of the disease. RECENT FINDINGS PBC develops in patients with genetic predisposition to autoimmunity in whom epigenetic mechanisms silence the Cl-/HCO3- exchanger AE2 in both cholangiocytes and lymphoid cells. Defective AE2 function can produce BECs damage as a result of decreased biliary HCO3- secretion with disruption of the protective alkaline umbrella that normally prevents the penetration of toxic apolar bile salts into cholangiocytes. AE2 dysfunction also causes increased intracellular pH (pHi) in cholangiocytes, leading to the activation of soluble adenylyl cyclase, which sensitizes BECs to bile salt-induced apoptosis. Recently, mitophagy was found to be inhibited by cytosolic alkalization and stimulated by acidification. Accordingly, we propose that AE2 deficiency may disturb mitophagy in BECs, thus, promoting the accumulation of defective mitochondria, oxidative stress and presentation of mitochondrial antigens to the immune cells. As women possess a more acidic endolysosomal milieu than men, mitophagy might be more affected in women in an AE2-defective background. Apart from affecting BECs function, AE2 downregulation in lymphocytes may also contribute to alter immunoregulation facilitating autoreactive T-cell responses. SUMMARY PBC can be considered as a disorder of Cl-/HCO3- exchange in individuals with genetic predisposition to autoimmunity.
Collapse
Affiliation(s)
- Jesús Prieto
- Center for Applied Medical Research (Centro de Investigación Médica Aplicada, CIMA), University of Navarra, Pamplona
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital – University of the Basque Country (UPV/EHU), San Sebastian
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, ‘Instituto de Salud Carlos III’)
- IKERBASQUE, Basque Foundation for Science, Bilbao
| | - Juan F. Medina
- Unit of Medical Training, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Ciordia S, Alvarez-Sola G, Rullán M, Urman JM, Ávila MA, Corrales FJ. Digging deeper into bile proteome. J Proteomics 2021; 230:103984. [PMID: 32932008 DOI: 10.1016/j.jprot.2020.103984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
The analysis of biological fluids to identify proteins that may indicate a disease setting, state and progression, is an increasingly explored field. Despite the expectatives created, there are several hurdles that must be solved to reach an extensive proteome coverage using mass spectrometry, mainly due to the complex composition of the matrices. In this regard, bile is specially challenging and yet, very attractive, as a proximal fluid that might provide valuable information for the management of liver and pancreas associated diseases. Proteins account for less than 5% of bile organic components and, although optimized protocols for protein extraction have been developed, only partial descriptions of bile proteome have been achieved. In this manuscript a new procedure is described that significantly improves protein recovery from rat bile, which reduces by a factor of six the sample amount required for a typical proteomics analysis. Moreover, the number of proteins reliably identified in a single nanoLC-MS/MS run from 1 μg protein was increased by three-fold. This procedure provides a valuable resource to dig deeper into the molecular composition of bile and open new avenues to identify new hallmarks of disease such as cholangiocarcinoma, hepatocellular carcinoma and pancreatic cancer for their better clinical management.
Collapse
Affiliation(s)
- Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología - CSIC, Proteored-ISCIII, 28049 Madrid, Spain
| | - Gloria Alvarez-Sola
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - María Rullán
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Jesús M Urman
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Matías A Ávila
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología - CSIC, Proteored-ISCIII, 28049 Madrid, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain.
| |
Collapse
|
5
|
Stsiapura VI, Bederman I, Stepuro II, Morozkina TS, Lewis SJ, Smith L, Gaston B, Marozkina N. S-Nitrosoglutathione formation at gastric pH is augmented by ascorbic acid and by the antioxidant vitamin complex, Resiston. PHARMACEUTICAL BIOLOGY 2018; 56:86-93. [PMID: 29298528 PMCID: PMC6130629 DOI: 10.1080/13880209.2017.1421674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Exogenous nitrogen oxides must be made bioavailable to sustain normal physiology because nitric oxide synthase (NOS) deficient mice are viable. In the stomach, S-nitrosoglutathione (GSNO) is formed from ingested nitrite and high levels of airway glutathione (GSH) that are cleared and swallowed. However, gastric GSNO may be broken down by nutrients like ascorbic acid (AA) before it is absorbed. OBJECTIVE To study the effect of AA on GSNO formation and stability. MATERIALS AND METHODS GSH and nitrite were reacted with or without 5 mM AA or Resiston (5 mM AA with retinoic acid and α-tocopherol). GSNO was measured by reduction/chemiluminescence and HPLC. AA and reduced thiols were measured colorimetrically. O-Nitrosoascorbate and AA were measured by gas chromatography-mass spectrometry (GC-MS). RESULTS GSNO was formed in saline and gastric samples (pH ∼4.5) from physiological levels of GSH and nitrite. Neither AA nor Resiston decreased [GSNO] at pH >3; rather, they increased [GSNO] (0.12 ± 0.19 μM without AA; 0.42 ± 0.35 μM with AA; and 0.43 ± 0.23 μM with Resiston; n = 4 each; p ≤ 0.05). However, AA compounds decreased [GSNO] at lower pH and with incubation >1 h. Mechanistically, AA, but not dehydroascorbate, increased GSNO formation; and the O-nitrosoascorbate intermediate was formed. CONCLUSIONS AA, with or without other antioxidants, did not deplete GSNO formed from physiological levels of GSH and nitrite at pH >3. In fact, it favoured GSNO formation, likely through O-nitrosoascorbate. Gastric GSNO could be a NOS-independent source of bioavailable nitrogen oxides.
Collapse
Affiliation(s)
| | - Ilya Bederman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Ivan I. Stepuro
- Department of Biochemistry, Yanka Kupala State University, Grodno, Belarus
| | | | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Laura Smith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Gaston
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
- Divisions of Pediatrics Pulmonology, Allergy, Immunology and Sleep Medicine and Gastroenterology and Nutrition, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Nadzeya Marozkina
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
- CONTACT Nadzeya MarozkinaCase Western Reserve University, 10900 Euclid Ave, BRB 722, Cleveland, OH44106, USA
| |
Collapse
|
6
|
van Niekerk J, Kersten R, Beuers U. Role of Bile Acids and the Biliary HCO 3- Umbrella in the Pathogenesis of Primary Biliary Cholangitis. Clin Liver Dis 2018; 22:457-479. [PMID: 30259847 DOI: 10.1016/j.cld.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The biliary HCO3- umbrella hypothesis states that human cholangiocytes and hepatocytes create a protective apical alkaline barrier against millimolar concentrations of potentially toxic glycine-conjugated bile salts in bile by secreting HCO3- into the bile duct lumen. This alkaline barrier may retain biliary bile salts in their polar, deprotonated, and membrane-impermeant state to avoid uncontrolled invasion of apolar toxic bile acids, which initiate apoptosis, autophagy and senescence. In primary biliary cholangitis, defects of the biliary HCO3- umbrella, leading to impaired biliary HCO3- secretion have been identified. Current medical therapies stabilize the putatively defective biliary HCO3- umbrella and improve long-term prognosis.
Collapse
Affiliation(s)
- Jorrit van Niekerk
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Remco Kersten
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
7
|
Hatano R, Kawaguchi K, Togashi F, Sugata M, Masuda S, Asano S. Ursodeoxycholic Acid Ameliorates Intrahepatic Cholestasis Independent of Biliary Bicarbonate Secretion in Vil2kd/kd Mice. Biol Pharm Bull 2017; 40:34-42. [DOI: 10.1248/bpb.b16-00529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryo Hatano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Fumitaka Togashi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Masato Sugata
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Shizuka Masuda
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
8
|
Abdelkader NF, Safar MM, Salem HA. Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson's Disease: Modulation of Mitochondrial Perturbations. Mol Neurobiol 2014; 53:810-817. [PMID: 25502462 DOI: 10.1007/s12035-014-9043-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022]
Abstract
The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat rotenone model. UDCA prominently improved motor performance in the open field test and halted the decline in the striatal dopamine content. Meanwhile, it improved mitochondrial function as verified by elevation of ATP associated with preservation of mitochondrial integrity as portrayed in the electron microscope examination. In addition, through its anti-inflammatory potential, UDCA reduced the rotenone-induced nuclear factor-κB expression and tumor necrosis factor alpha level. Furthermore, UDCA amended alterations in Bax and Bcl-2 and reduced the activities of caspase-8, caspase-9, and caspase-3, indicating that it suppressed rotenone-induced apoptosis via modulating both intrinsic and extrinsic pathways. In conclusion, UDCA can be introduced as a novel approach for the management of Parkinson's disease via anti-apoptotic and anti-inflammatory mechanisms. These effects are probably linked to dopamine synthesis and mitochondrial regulation.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hesham A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Rodríguez-Ortigosa CM, Celay J, Olivas I, Juanarena N, Arcelus S, Uriarte I, Marín JJG, Avila MA, Medina JF, Prieto J. A GAPDH-mediated trans-nitrosylation pathway is required for feedback inhibition of bile salt synthesis in rat liver. Gastroenterology 2014; 147:1084-93. [PMID: 25066374 DOI: 10.1053/j.gastro.2014.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 06/25/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Bile salts inhibit their own production by inducing the nuclear receptor small heterodimer partner (SHP) (encoded by NR0B2), which contributes to repression of the gene encoding cholesterol 7α-hydroxylase (CYP7A1), a key enzyme for the control of bile salt synthesis. On the other hand, bile salts stimulate hepatic synthesis of nitric oxide. We investigated the role of nitric oxide signaling in the control of CYP7A1 expression and the involvement in this process of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which participates in intracellular propagation of nitric oxide signals. METHODS We studied the effects of inhibitors of nitric oxide synthesis (L-NG-nitroarginine methyl ester [L-NAME]) or protein nitrosylation (via dithiothreitol) on bile salt homeostasis in male Wistar rats placed on a cholate-rich diet for 5 days and in cultured primary hepatocytes. S-nitrosylation of GAPDH was assessed using a biotin-switch assay. Interacions of SHP with other proteins and with the Cyp7a1 promoter sequence were studied using immunoprecipitation and chromatin immunoprecipitation (ChIP) assays. We reduced the GAPDH levels in H35 cells with small interfering RNAs. GAPDH nitrosylation was assessed in normal and cholestatic rat and human livers. RESULTS Rats placed on cholate-rich diets and given L-NAME had increased intrahepatic and biliary levels of bile salts, and deficiency in repression of CYP7A1 (at the messenger RNA and protein levels) in liver tissue, despite preserved induction of SHP. In cultured hepatocytes, L-NAME or dithiothreitol blocked cholate-induced down-regulation of CYP7A1 without impairing SHP up-regulation. In hepatocytes, cholate promoted S-nitrosylation of GAPDH and its translocation to the nucleus, accompanied by S-nitrosylation of histone deacetylase 2 (HDAC2) and Sirtuin 1 (SIRT1), deacetylases that participate, respectively, in the formation of Cyp7a1 and Shp repressor complexes. Knockdown of GAPDH prevented repression of CYP7A1 by cholate, and blocking nuclear transport of nitrosylated GAPDH reduced cholate-induced nitrosylation of HDAC2 and SIRT1; this effect was accompanied by abrogation of Cyp7a1 repression. Cholate induced binding of SHP to HDAC2 and its recruitment to the Cyp7a1 promoter; these processes were inhibited by blocking nitric oxide synthesis. Levels of nitrosylated GAPDH and nitrosylated HDAC2 were increased in cholestatic human and rat livers reflecting increased concentrations of bile salts in these conditions. CONCLUSIONS In rat liver, excess levels of bile salts activate a GAPDH-mediated transnitrosylation cascade that provides feedback inhibition of bile salt synthesis.
Collapse
Affiliation(s)
- Carlos M Rodríguez-Ortigosa
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain.
| | - Jon Celay
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Israel Olivas
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Nerea Juanarena
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Sara Arcelus
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - Iker Uriarte
- Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - José Juan G Marín
- Laboratory of Experimental Hepatology and Drug Targeting, University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Salamanca, Spain
| | - Matias A Avila
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - Juan F Medina
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - Jesus Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Liver Unit, University of Navarra Clinic, Pamplona, Spain.
| |
Collapse
|
10
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
11
|
Munoz-Garrido P, Fernandez-Barrena MG, Hijona E, Carracedo M, Marín JJG, Bujanda L, Banales JM. MicroRNAs in biliary diseases. World J Gastroenterol 2012; 18:6189-6196. [PMID: 23180938 PMCID: PMC3501766 DOI: 10.3748/wjg.v18.i43.6189] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/05/2012] [Accepted: 08/14/2012] [Indexed: 02/06/2023] Open
Abstract
Cholangiopathies are a group of diseases primarily or secondarily affecting bile duct cells, and result in cholangiocyte proliferation, regression, and/or transformation. Their etiopathogenesis may be associated with a broad variety of causes of different nature, which includes genetic, neoplastic, immune-associated, infectious, vascular, and drug-induced alterations, or being idiopathic. miRNAs, small non-coding endogenous RNAs that post-transcriptionally regulate gene expression, have been associated with pathophysiological processes in different organs and cell types, and are postulated as potential targets for diagnosis and therapy. In the current manuscript, knowledge regarding the role of miRNAs in the development and/or progression of cholangiopathies has been reviewed and the most relevant findings in this promising field of hepatology have been highlighted.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To critically review most recent experimental evidence for the protective action of biliary HCO(3)(-) secretion against bile acid-induced bile duct damage and development of fibrosing cholangiopathy in humans and experimental animals. RECENT FINDINGS Studies in human cholangiocytes in vitro indicate that a biliary HCO(3)(-) umbrella protects against bile acid-induced cholangiocyte damage and apoptosis in humans. The Cl(-)/HCO(3)(-) exchanger, AE2, and an intact biliary glycocalyx appear crucial for its stability. Related studies with experimental animal models in vivo have to be interpreted with caution as humans and mice differ not only with regard to bile salt pool, but also their expression patterns of transport proteins and signalling molecules. SUMMARY Adequate biliary HCO(3)(-) secretion may protect against bile salt-induced cholangiopathies. Future therapeutic strategies in biliary diseases will aim at stabilizing the biliary HCO(3)(-) umbrella.
Collapse
|
13
|
Úriz M, Sáez E, Prieto J, Medina JF, Banales JM. Ursodeoxycholic acid is conjugated with taurine to promote secretin-stimulated biliary hydrocholeresis in the normal rat. PLoS One 2011; 6:e28717. [PMID: 22194894 PMCID: PMC3237485 DOI: 10.1371/journal.pone.0028717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/14/2011] [Indexed: 12/15/2022] Open
Abstract
Background & Aims Secretin induces bicarbonate-rich hydrocholeresis in healthy individuals, but not in untreated patients with primary biliary cirrhosis (PBC). Ursodeoxycholic acid (UDCA) – the first choice treatment for PBC – restores the secretin response. Compared with humans, secretin has poor effect in experimental normal-rat models with biliary drainage, although it may elicit hydrocholeresis when the bile-acid pool is maintained. In view of the benefits of UDCA in PBC, we used normal-rat models to unravel the acute contribution of UDCA (and/or taurine-conjugated TUDCA) for eliciting the biliary secretin response. Methods Intravascular and/or intrabiliary administration of agonists and inhibitors was performed in normal rats with biliary monitoring. Secretin/bile-acid interplay was analyzed in 3D cultured rat cholangiocytes that formed expansive cystic structures with intralumenal hydroionic secretion. Results In vivo, secretin stimulates hydrocholeresis upon UDCA/TUDCA infusion, but does not modify the intrinsic hypercholeretic effect of dehydrocholic acid (DHCA). The former effect is dependent on microtubule polymerization, and involves PKCα, PI3K and MEK pathways, as shown by colchicine (i.p.) and retrograde biliary inhibitors. In vitro, while secretin alone accelerates the spontaneous expansion of 3D-cystic structures, this effect is enhanced in the presence of TUDCA, but not UDCA or DHCA. Experiments with inhibitors and Ca2+-chelator confirmed that the synergistic effect of secretin plus TUDCA involves microtubules, intracellular Ca2+, PKCα, PI3K, PKA and MEK pathways. Gene silencing also demonstrated the involvement of the bicarbonate extruder Ae2. Conclusions UDCA is conjugated in order to promote secretin-stimulated hydrocholeresis in rats through Ae2, microtubules, intracellular Ca2+, PKCα, PI3K, PKA, and MEK.
Collapse
Affiliation(s)
- Miriam Úriz
- Division of Gene Therapy and Hepatology, CIMA Clinic and School of Medicine, University of Navarra, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| | - Elena Sáez
- Division of Gene Therapy and Hepatology, CIMA Clinic and School of Medicine, University of Navarra, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| | - Jesús Prieto
- Division of Gene Therapy and Hepatology, CIMA Clinic and School of Medicine, University of Navarra, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| | - Juan F. Medina
- Division of Gene Therapy and Hepatology, CIMA Clinic and School of Medicine, University of Navarra, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
- * E-mail: (JB); (JM)
| | - Jesús M. Banales
- Division of Gene Therapy and Hepatology, CIMA Clinic and School of Medicine, University of Navarra, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
- * E-mail: (JB); (JM)
| |
Collapse
|
14
|
Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci (Lond) 2011; 121:523-44. [PMID: 21854363 DOI: 10.1042/cs20110184] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UDCA (ursodeoxycholic acid) is the therapeutic agent most widely used for the treatment of cholestatic hepatopathies. Its use has expanded to other kinds of hepatic diseases, and even to extrahepatic ones. Such versatility is the result of its multiple mechanisms of action. UDCA stabilizes plasma membranes against cytolysis by tensioactive bile acids accumulated in cholestasis. UDCA also halts apoptosis by preventing the formation of mitochondrial pores, membrane recruitment of death receptors and endoplasmic-reticulum stress. In addition, UDCA induces changes in the expression of metabolizing enzymes and transporters that reduce bile acid cytotoxicity and improve renal excretion. Its capability to positively modulate ductular bile flow helps to preserve the integrity of bile ducts. UDCA also prevents the endocytic internalization of canalicular transporters, a common feature in cholestasis. Finally, UDCA has immunomodulatory properties that limit the exacerbated immunological response occurring in autoimmune cholestatic diseases by counteracting the overexpression of MHC antigens and perhaps by limiting the production of cytokines by immunocompetent cells. Owing to this multi-functionality, it is difficult to envisage a substitute for UDCA that combines as many hepatoprotective effects with such efficacy. We predict a long-lasting use of UDCA as the therapeutic agent of choice in cholestasis.
Collapse
|
15
|
Veedfald S, Penninga L, Wettergren A, Gluud C. Bile acids for biliary colic. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2011. [DOI: 10.1002/14651858.cd009253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Veedfald
- Rigshospitalet, Copenhagen University Hospital; Department of Surgery and Transplantation C2122; Blegdamsvej 9 Copenhagen Denmark DK-2100
| | - Luit Penninga
- Rigshospitalet, Copenhagen University Hospital; Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 3344,; Blegdamsvej 9 Copenhagen Denmark DK-2100
| | - Andre Wettergren
- Rigshospitalet, Copenhagen University Hospital; Department of Surgery and Transplantation C2122; Blegdamsvej 9 Copenhagen Denmark DK-2100
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 3344, Rigshospitalet, Copenhagen University Hospital; Cochrane Hepato-Biliary Group; Blegdamsvej 9 Copenhagen Denmark DK-2100
| |
Collapse
|
16
|
Medina JF. Role of the anion exchanger 2 in the pathogenesis and treatment of primary biliary cirrhosis. Dig Dis 2011; 29:103-12. [PMID: 21691115 DOI: 10.1159/000324144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The essential anion exchanger (AE) involved in biliary bicarbonate secretion is AE2/SLC4A2, a membrane protein which has also been recognized to be relevant for the regulation of the intracellular pH (pH(i)) in several cell types. Previously, we reported that the expression of AE2 mRNA is diminished in liver biopsies and peripheral blood mononuclear cells from patients with primary biliary cirrhosis (PBC). Immunohistochemical studies indicated that the expression of the AE2 protein is decreased in the bile ducts and hepatocytes in PBC livers. Moreover, we found that bile duct cells isolated from PBC patients and cultured for a few passages exhibit defective Na(+)-independent Cl(-)/HCO(3)(-) exchange. Interestingly, positron emission tomography studies have shown that PBC patients, even at early stages of the disease, fail to secrete bicarbonate to bile in response to secretin, a defect that can be partially reversed after several months of treatment with ursodeoxycholic acid. Altogether, these findings sustain our hypothesis that dysfunctions related to AE2 might have a role in the pathogenesis of PBC. Inadequate AE2 function in lymphocytes may disturb pH(i) regulation in these cells and alter immune homeostasis leading to autoimmunity. On the other hand, reduced AE2 in cholangiocytes could cause cholestasis and oxidative stress of bile duct cells. Cholangiocyte changes, together with altered immune homeostasis, could favor the development of antimitochondrial antibodies and the autoimmune attack on biliary ducts. Our recent findings that Ae2(a,b)-deficient mice indeed display most of these features strongly support the notion that AE2 abnormalities may be involved in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Juan F Medina
- Division of Gene Therapy and Hepatology - Liver Unit, School of Medicine, Clinic and CIMA University of Navarra, and Ciberehd, Pamplona, Spain.
| |
Collapse
|