1
|
Cheng P, Wei J, Liu B, Zhao Y, Ma B, Feng X, Xiong M, Zhao J, Shi C, Li Z. Metastasis-associated protein 1 participates in regulating luminal acidification of the epididymis via repressing estrogen receptor alpha transcription. Andrology 2024; 12:1872-1886. [PMID: 38436139 DOI: 10.1111/andr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND As a component of the nucleosome remodeling and deacetylating (NuRD) complex, metastasis-associated protein 1 (MTA1) has been reported to be abundant in male reproductive system and might participate in spermatogenesis and sperm maturation, whereas the precise functional role of MTA1 in these processes is still undetermined. OBJECTIVE To investigate the effect and potential function of MTA1 in male fertility. MATERIALS AND METHODS Mta1 knockout mice (Mta1-/-) were employed to detect their reproductive phenotype. The pH value of Mta1-/- epididymal luminal fluid was measured, and the potential mechanism of MTA1 involved in regulating luminal acidification was detected in vivo and in vitro. A vasectomy model with abnormal pH of epididymal lumen was established to further detect the effect of MTA1 on epididymal luminal microenvironment. RESULTS Mta1-/- mice were fertile without any detectable defects in spermatogenesis or sperm motility while the deficiency of MTA1 could acidify the initial segment of epididymis to a certain extent. MTA1 could interact with estrogen receptor alpha (ERα) and inhibit the transcription of ERα target gene, hydrogen exchanger 3 (NHE3), and ultimately affect the epididymal luminal milieu. After vasectomy, the Mta1-/- mice presented a more acidic epididymal lumen which was closer to the normal state compared to the wild-type model. DISCUSSION AND CONCLUSION MTA1 is dispensable for male fertility in mice, but plays a potentially important function in regulating luminal acidification of the epididymis.
Collapse
Affiliation(s)
- Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jinhua Wei
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Bo Liu
- The Air Force Hospital of Central Theater of PLA, Datong, China
| | - Ya Zhao
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Binfang Ma
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Xiao Feng
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Mingxiang Xiong
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, Air Force Medical University, Xi'an, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, China
| |
Collapse
|
2
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
3
|
Vattem C, Pakala SB. Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. J Biosci 2022. [DOI: 10.1007/s12038-022-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Li Q, Staiculescu D, Zhou Y, Chen J. Pancreatic Leiomyosarcoma With Schistosomiasis Hematobia: A Case Report and Literature Review. Front Oncol 2021; 11:638905. [PMID: 33869026 PMCID: PMC8045707 DOI: 10.3389/fonc.2021.638905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Pancreatic leiomyosarcoma (PL) is a very rare, malignant neoplasm with a very poor prognosis. Here, we examine a novel case of PL with schistosomiasis hematobia. The patient had been initially misdiagnosed by the first magnetic resonance imaging (MRI). The second imaging examination demonstrated an enlarged heterogeneous tumor mass in the body-tail of pancreas. Following image analysis, the patient underwent a pancreatectomy, splenectomy and lymph node dissections. Sixteen months after the tumor resection, follow-up computed tomography (CT) and MRI revealed tumor metastasis in the liver and lung. PL has non-specific clinical manifestations and imaging characteristics, making early diagnosis very challenging. When it is difficult to distinguish between benign and malignant pancreatic lesions, short-term imaging follow-up is preferred. In this case report, we discuss the relationship between PL and schistosomiasis hematobia.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yurong Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Chen
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Young ND, Gasser RB. Opisthorchis viverrini Draft Genome - Biomedical Implications and Future Avenues. ADVANCES IN PARASITOLOGY 2018; 101:125-148. [PMID: 29907252 DOI: 10.1016/bs.apar.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Opisthorchiasis is a neglected tropical disease of major proportion, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Southeast Asia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Despite technological advances, little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. The advent of high-throughput nucleic acid sequencing and bioinformatic technologies is enabling researchers to gain global insights into the molecular pathways and processes in parasites. The principal aims of this chapter are to (1) review molecular research of O. viverrini and opisthorchiasis; (2) provide an account of recent advances in the sequencing and characterization of the genome and transcriptomes of O. viverrini; (3) describe the complex life of this worm in the biliary system of the definitive (human) host and how the fluke interacts with this host and causes disease at the molecular level; (4) discuss the implications of systems biological research and (5) consider how progress in genomics and informatics might enable explorations of O. viverrini and related worms and the discovery of new interventions against opisthorchiasis and CCA.
Collapse
Affiliation(s)
- Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
6
|
Feng M, Cheng X. Parasite-Associated Cancers (Blood Flukes/Liver Flukes). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:193-205. [DOI: 10.1007/978-981-10-5765-6_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Mathema VB, Na-Bangchang K. Current Insights on Cholangiocarcinoma Research: a Brief Review. Asian Pac J Cancer Prev 2015; 16:1307-13. [DOI: 10.7314/apjcp.2015.16.4.1307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Ryu SH, Jang MK, Kim WJ, Lee D, Chung YH. Metastatic tumor antigen in hepatocellular carcinoma: golden roads toward personalized medicine. Cancer Metastasis Rev 2014; 33:965-80. [PMID: 25325987 DOI: 10.1007/s10555-014-9522-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), a prototype of hypervascular tumors, is one of the most common malignancies in the world, especially hyperendemic in the Far East where chronic hepatitis B virus (HBV) infection is highly prevalent. It is characterized by the clinical feature of a poor prognosis or a high mortality due to its already far advanced stages at diagnosis. It is so multifactorial that hepatocarcinogenesis cannot be explained by a single molecular mechanism. To date, a number of pathways have been known to contribute to the development, growth, angiogenesis, and even metastasis of HCC. Among the various factors, metastatic tumor antigens (MTAs) or metastasis-associated proteins have been vigorously investigated as an intriguing target in the field of hepatocarcinogenesis. According to recent studies including ours, MTAs are not only involved in the HCC development and growth (molecular carcinogenesis), but also closely associated with the post-operative recurrence and a poor prognosis or a worse response to post-operative anti-cancer therapy (clinical significance). Herein, we review MTAs in light of their essential structure, functions, and molecular mechanism in hepatocarcinogenesis. We will also focus in detail on the interaction between hepatitis B x protein (HBx) of HBV and MTA in order to clarify the HBV-associated HCC development. Finally, we will discuss the prognostic significance and clinical application of MTA in HCC. We believe that this review will help clinicians to understand the meaning and use of the detection of MTA in order to more effectively manage their HCC patients.
Collapse
Affiliation(s)
- Soo Hyung Ryu
- Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul, South Korea
| | | | | | | | | |
Collapse
|
9
|
Abstract
Metastasis-associated gene or metastasis tumor antigen 1 (MTA1) is a new member of cancer progression-related gene family. It was first identified in rat mammary adenocarcinoma and later recognized as an important constituent of nucleosomal remodeling complex (NuRD), displaying dual regulatory functions as a co-repressor and co-activator for a large number of genes. Chromatin remodelers are ATP-dependent multi-protein chromatin modifying machines. These complexes alter the nucleosome positioning regulating the accessibility of genomic DNA to various transcription factors and thus modulate eukaryotic gene transcription. Since its identification two decades ago, MTA1 has been reported to be overexpressed in many cancers. Moreover, its overexpression has also been correlated with transformation and tumor progression. Furthermore, MTA1 has been shown to modulate the response of several tumor suppressor genes like p53 and oncogenes like c-myc. Taken together, current literature suggests that MTA proteins, especially MTA1, act as a master co-regulatory molecule involved in the carcinogenesis and progression of various malignant tumors. The primary focus of this review is to provide an overview of the MTA proteins with special emphasis on its role in cancer and use as a marker for cancer progression and potential target for therapy.
Collapse
Affiliation(s)
- Ekjot Kaur
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | | | | |
Collapse
|
10
|
MAPKAP1 rs10118570 polymorphism is associated with anti-infection and anti-hepatic fibrogenesis in schistosomiasis japonica. PLoS One 2014; 9:e105995. [PMID: 25153992 PMCID: PMC4143368 DOI: 10.1371/journal.pone.0105995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022] Open
Abstract
Chronic infection with Schistosoma japonicum is an important cause of hepatic fibrosis (HF). Human 9q33.3 is one of the most important loci for stress-related diseases. We examined the potential associations of 43 single-nucleotide polymorphisms (SNPs) with S. japonicum infection and HF in epidemic region in China. We identified a SNP (rs10118570 GG in mitogen-activated protein kinase associated protein 1, MAPKAP1) contributes to anti-infection (adjusted OR = 0.35) and anti-fibrogenesis (adjusted RR = 0.44) in the discovery study. Replicative and combined studies showed consistent protective quality for this genotype (replicative: adjusted OR = 0.37 for anti-infection, and adjusted RR = 0.40 for anti-fibrogenesis; Combined: adjusted OR = 0.45 for anti-infection, and adjusted RR = 0.42 for anti-fibrogenesis). Univariate and multivariate analysis in the discovery, replicative and combined studies, suggested that durations (years), splenomegaly, serum ALB and rs10118570 were independent predictors influencing the fibrogenesis. The analysis of gene-gene interaction showed rs10118570 functions independently. We conclude that MAPKAP1 may represent a novel anti-infection and anti-fibrogenesis genomic locus in chronic schistosomiasis japonica. And rs10118570 may be a potential biomarker and target for the treatment of this life-threatening ancient disease.
Collapse
|
11
|
Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, Safavi-Hemami H, Kaewkong W, Bertrand D, Gao S, Seet Q, Wongkham S, Teh BT, Wongkham C, Intapan PM, Maleewong W, Yang X, Hu M, Wang Z, Hofmann A, Sternberg PW, Tan P, Wang J, Gasser RB. The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun 2014; 5:4378. [PMID: 25007141 PMCID: PMC4104445 DOI: 10.1038/ncomms5378] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/11/2014] [Indexed: 12/15/2022] Open
Abstract
Opisthorchiasis is a neglected, tropical disease caused by the carcinogenic Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is linked to malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia. No vaccine is available, and only one drug (praziquantel) is used against the parasite. Little is known about O. viverrini biology and the diseases that it causes. Here we characterize the draft genome (634.5 Mb) and transcriptomes of O. viverrini, elucidate how this fluke survives in the hostile environment within the bile duct and show that metabolic pathways in the parasite are highly adapted to a lipid-rich diet from bile and/or cholangiocytes. We also provide additional evidence that O. viverrini and other flukes secrete proteins that directly modulate host cell proliferation. Our molecular resources now underpin profound explorations of opisthorchiasis/CCA and the design of new interventions. The Asian liver fluke is a parasitic worm that is linked to an increased risk of malignant cancer. Here, the authors sequence the draft genome and transcriptome of this fluke and provide insight into how the species has adapted to be able to survive in the bile duct.
Collapse
Affiliation(s)
- Neil D Young
- 1] Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia [2]
| | - Niranjan Nagarajan
- 1] Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore [2]
| | - Suling Joyce Lin
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Aaron R Jex
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ross S Hall
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Worasak Kaewkong
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Denis Bertrand
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Song Gao
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 138672, Republic of Singapore
| | - Qihui Seet
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Sopit Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Chaisiri Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pewpan Maleewong Intapan
- Research and Diagnostic Center for Emerging Infectious Diseases, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | - Andreas Hofmann
- 1] Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia [2] Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Paul W Sternberg
- Division of Biology, HHMI, California Institute of Technology, Pasadena, California 91125, USA
| | - Patrick Tan
- 1] Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore [2] Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Jun Wang
- 1] [2] Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark [3] Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia [4] Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Brindley PJ, Hotez PJ. Break Out: urogenital schistosomiasis and Schistosoma haematobium infection in the post-genomic era. PLoS Negl Trop Dis 2013; 7:e1961. [PMID: 23556007 PMCID: PMC3610632 DOI: 10.1371/journal.pntd.0001961] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Paul J. Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington DC, United States of America
- * E-mail: (PB); (PH)
| | - Peter J. Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine at Baylor College of Medicine, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, Texas, United States of America
- * E-mail: (PB); (PH)
| |
Collapse
|
13
|
Jiang Y, Long H, Li T, Wang W, Liu H, Zhang X. Schistosomiasis may contribute to goblet cell carcinoid of the appendix. J Parasitol 2012; 98:565-8. [PMID: 22746391 DOI: 10.1645/jp-ge-2865.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract : To investigate whether schistosomiasis can contribute to appendiceal goblet cell carcinoid, appendix samples were obtained from 3 patients with combined appendiceal schistosomiasis and goblet cell carcinoid (CSG), 6 patients with goblet cell carcinoid only (GCC), 12 patients with appendiceal schistosomiasis only (ASO), and 12 cases with normal appendix (NA), all of similar gender ratio and age distributions. Hematoxylin and eosin-(H&E) stained sections were studied in 3 CSGs and 12 ASOs to diagnose schistosomiasis by detecting schistosome eggs. H&E and alcian blue/PAS-stained sections and immunohistochemistry of CgA and CEA were employed to establish the diagnosis of GCC in the 3 CSGs and 6 GCCs. Then, to determine whether schistosomiasis can contribute to GCC, immunostaining patterns of CgA and Ki67 in mucosal crypt epithelia were investigated and compared among all 33 cases. Our results revealed typical histological and immunohistochemical phenotypes of GCC in the 3 CSGs and 6 GCCs and schistosome egg deposits in 3 CSGs and 12 ASOs. We found that the expression levels of both CgA and Ki67 in mucosal crypt epithelia were significantly higher in CSG than in GCC (P < 0.05 = 0.013 and P = 0.004, respectively). Moreover, high expression levels of both CgA and Ki67 in mucosal crypt epithelia favor ASO as compared to NA (P < 0.001 = 3.4 × 10(-6) and 3.1 × 10(-5), respectively). Our findings suggest that appendiceal schistosomiasis was associated with increased proliferation and neuroendocrine differentiation of mucosal pluripotent crypt cells and that it may contribute to GCC, which is documented to originate from mucosal pluripotent crypt cells in mucosal crypt epithelia.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | | | | | | | | | | |
Collapse
|
14
|
Li DQ, Pakala SB, Nair SS, Eswaran J, Kumar R. Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res 2012; 72:387-94. [PMID: 22253283 PMCID: PMC3261506 DOI: 10.1158/0008-5472.can-11-2345] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cells frequently exhibit deregulation of coregulatory molecules to drive the process of growth and metastasis. One such group of ubiquitously expressed coregulators is the metastasis-associated protein (MTA) family, a critical component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA1 occupies a special place in cancer biology because of its dual corepressor or coactivator nature and widespread overexpression in human cancers. Here, we highlight recent advances in our understanding of the vital roles of MTA1 on transformation, epithelial-mesenchymal transition, and the functions of key cancer-relevant molecules such as a nexus of multiple oncogenes and tumor suppressors. In addition to its paramount role in oncogenesis, we reveal several new physiologic functions of MTA1 related to DNA damage, inflammatory responses, and infection, in which MTA1 functions as a permissive "gate keeper" for cancer-causing parasites. Further, these discoveries unraveled the versatile multidimensional modes of action of MTA1, which are independent of the NuRD complex and/or transcription. Given the emerging roles of MTA1 in DNA repair, inflammation, and parasitism, we discuss the possibility of MTA1-targeted therapy for use not only in combating cancer but also in other inflammation and pathogen-driven pathologic conditions.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
| | - Suresh B. Pakala
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
| | - Sujit S. Nair
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
| | - Jeyanthy Eswaran
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
- McCormick Genomic and Proteomic Center, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| |
Collapse
|