1
|
Mercado-Gómez M, Prieto-Fernández E, Goikoetxea-Usandizaga N, Vila-Vecilla L, Azkargorta M, Bravo M, Serrano-Maciá M, Egia-Mendikute L, Rodríguez-Agudo R, Lachiondo-Ortega S, Lee SY, Eguileor Giné A, Gil-Pitarch C, González-Recio I, Simón J, Petrov P, Jover R, Martínez-Cruz LA, Ereño-Orbea J, Delgado TC, Elortza F, Jiménez-Barbero J, Nogueiras R, Prevot V, Palazon A, Martínez-Chantar ML. The spike of SARS-CoV-2 promotes metabolic rewiring in hepatocytes. Commun Biol 2022; 5:827. [PMID: 35978143 PMCID: PMC9383691 DOI: 10.1038/s42003-022-03789-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacerbated immune responses or treatment-associated drug toxicity. Herein we demonstrate that hepatocytes are susceptible to infection in different models: primary hepatocytes derived from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, promoting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity. Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-angiotensin system increases the susceptibility of primary hepatocytes to infection with pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver.
Collapse
Affiliation(s)
- Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Laura Vila-Vecilla
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRedISCIII, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Miren Bravo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Alvaro Eguileor Giné
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Irene González-Recio
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Jorge Simón
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Petar Petrov
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Experimental Hepatology Joint Research Unit, IIS Hospital La Fe, Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Experimental Hepatology Joint Research Unit, IIS Hospital La Fe, Valencia, Spain
- Dep. Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - June Ereño-Orbea
- Chemical Glycobiology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic Chemistry, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain
| | - Teresa Cardoso Delgado
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), ProteoRedISCIII, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic Chemistry, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES), 28029, Madrid, Spain
| | - Ruben Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de a Obesidad y Nutrición (CIBERobn), Galician Agency of Innovation (GAIN), Xunta de Galicia, 15782, Santiago de Compostela, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Development and Plasticity of the Neuroendocrine Brain Lab, UMR-S1172 INSERM, DISTALZ, EGID, Lille, France
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - María L Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Abstract
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Collapse
Affiliation(s)
- Parth Trivedi
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuang Wang
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott L Friedman
- Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|