1
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Liu B, Yin H, Li Y, Mao G, Yang S, Zhang K. Recent Advances in Small Molecular Fluorescence Probes for Fatty Liver Diseases. CHEMOSENSORS 2023; 11:241. [DOI: 10.3390/chemosensors11040241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Fatty liver diseases are a spectrum of liver disorders consisting of the benign fatty liver, which could eventually lead to cirrhosis or even hepatocellular cancer (HCC) without timely treatment. Therefore, early diagnosis is crucial for fatty liver diseases. Liver biopsy is regarded as the gold standard in the diagnosis of fatty liver diseases. However, it is not recommended for routine use due to its invasiveness and complicated operation. Thus, it is urgent to diagnose fatty liver diseases with non-invasive and precise methods. In this regard, fluorescence imaging technology has attracted intensive attention and become a robust non-invasive method for fatty liver visualization, and a series of fluorescent probes are being intensively designed to track the biomarkers in fatty liver. In this brief review, the small molecular fluorescent probes employed in fatty liver are summarized, mainly focusing on the last four years. Moreover, current opportunities and challenges in the development of fluorescent probes for fatty liver will be highlighted.
Collapse
Affiliation(s)
- Bo Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Honghui Yin
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaxiong Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Omanovic Kolaric T, Kizivat T, Mihaljevic V, Zjalic M, Bilic-Curcic I, Kuna L, Smolic R, Vcev A, Wu GY, Smolic M. Liraglutide Exerts Protective Effects by Downregulation of PPARγ, ACSL1 and SREBP-1c in Huh7 Cell Culture Models of Non-Alcoholic Steatosis and Drug-Induced Steatosis. Curr Issues Mol Biol 2022; 44:3465-3480. [PMID: 36005135 PMCID: PMC9406665 DOI: 10.3390/cimb44080239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
(1) Background: With the aging of the population and polypharmacy encountered in the elderly, drug-induced steatosis (DIS) has become frequent cause of non-alcoholic steatosis (NAS). Indeed, NAS and DIS may co-exist, making the ability to distinguish between the entities ever more important. The aim of our study was to study cell culture models of NAS and DIS and determine the effects of liraglutide (LIRA) in those models. (2) Methods: Huh7 cells were treated with oleic acid (OA), or amiodarone (AMD) to establish models of NAS and DIS, respectively. Cells were treated with LIRA and cell viability was assessed by MTT, lipid accumulation by Oil-Red-O staining and triglyceride assay, and intracellular signals involved in hepatosteatosis were quantitated by RT-PCR. (3) Results: After exposure to various OA and AMD concentrations, those that achieved 80% of cells viabilities were used in further experiments to establish NAS and DIS models using 0.5 mM OA and 20 µM AMD, respectively. In both models, LIRA increased cell viability (p < 0.01). Lipid accumulation was increased in both models, with microsteatotic pattern in DIS, and macrosteatotic pattern in NAS which corresponds to greater triglyceride accumulation in latter. LIRA ameliorated these changes (p < 0.001), and downregulated expression of lipogenic ACSL1, PPARγ, and SREBP-1c pathways in the liver (p < 0.01) (4) Conclusions: LIRA ameliorates hepatocyte steatosis in Huh7 cell culture models of NAS and DIS.
Collapse
Affiliation(s)
- Tea Omanovic Kolaric
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Crkvena 21, 31000 Osijek, Croatia; (T.O.K.); (V.M.); (L.K.); (R.S.)
- Department of Pharmacology, Faculty of Medicine Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
| | - Tomislav Kizivat
- Department of Nuclear Medicine and Oncology, Faculty of Medicine Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Vjera Mihaljevic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Crkvena 21, 31000 Osijek, Croatia; (T.O.K.); (V.M.); (L.K.); (R.S.)
- Department of Pharmacology, Faculty of Medicine Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
| | - Milorad Zjalic
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia;
| | - Ines Bilic-Curcic
- Department of Pharmacology, Faculty of Medicine Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
- Department of Endocrinology, University Hospital Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Lucija Kuna
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Crkvena 21, 31000 Osijek, Croatia; (T.O.K.); (V.M.); (L.K.); (R.S.)
| | - Robert Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Crkvena 21, 31000 Osijek, Croatia; (T.O.K.); (V.M.); (L.K.); (R.S.)
| | - Aleksandar Vcev
- Department of Pathophysiology and Physiology with Immunology, Faculty of Dental Medicine and Health Osijek, Crkvena 21, 31000 Osijek, Croatia;
| | - George Y. Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, 135 Dowling Way, Farmington, CT 06030, USA;
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Crkvena 21, 31000 Osijek, Croatia; (T.O.K.); (V.M.); (L.K.); (R.S.)
- Department of Pharmacology, Faculty of Medicine Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
| |
Collapse
|
4
|
Li J, Guo C, Wu J. The Agonists of Peroxisome Proliferator-Activated Receptor-γ for Liver Fibrosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2619-2628. [PMID: 34168433 PMCID: PMC8219117 DOI: 10.2147/dddt.s310163] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Liver fibrosis is a common link in the transformation of acute and chronic liver diseases to cirrhosis. It is of great clinical significance to study the factors associated with the induction of liver fibrosis and elucidate the method of reversal. Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear transcription factors that can be activated by peroxisome proliferators. PPARs play an important role in fibrosis of various organs, especially the liver, by regulating downstream targeted pathways, such as TGF-β, MAPKs, and NF-κB p65. In recent years, the development and screening of PPAR-γ ligands have become a focus of research. The PPAR-γ ligands include synthetic hypolipidemic and antidiabetic drugs. In addition, microRNAs, lncRNAs, circRNAs and nano new drugs have attracted research interest. In this paper, the research progress of PPAR-γ in the pathogenesis and treatment of liver fibrosis was discussed based on the relevant literature in recent years.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, People's Republic of China
| |
Collapse
|
5
|
Trivella JP, Martin P, Carrion AF. Novel targeted therapies for the management of liver fibrosis. Expert Opin Emerg Drugs 2020; 25:59-70. [PMID: 32098512 DOI: 10.1080/14728214.2020.1735350] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Introduction: Prolonged liver injury results in tissue damage and replacement by extracellular matrix and fibrosis. Cirrhosis represents a leading cause of mortality worldwide and imposes a major financial burden on health-care systems. Fortunately, fibrogenesis has proven to be reversible if halted early, encouraging the development of novel anti-fibrotic agents that may accelerate histological restoration. Preclinical data have elucidated numerous potential therapeutic targets and many anti-fibrotic agents are currently at various stages of clinical research.Areas covered: The present review summarizes recent clinical data regarding anti-fibrotic drugs including monoclonal antibodies, targeted conjugates, and small molecule agents.Expert opinion: Although undeniable progress has been made in the development of anti-fibrotic agents in recent years, most data currently available are derived from preclinical and early clinical studies. The efficacy and safety of these agents will need to be corroborated by larger clinical trials, some of which are ongoing with results expected in the upcoming years. Combination therapy with agents targeting different pathways of fibrogenesis will also be of great interest for the future and will need to be explored in clinical trials.
Collapse
Affiliation(s)
- Juan P Trivella
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul Martin
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andres F Carrion
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Gawrieh S, Chalasani N. Emerging Treatments for Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Clin Liver Dis 2018; 22:189-199. [PMID: 29128056 DOI: 10.1016/j.cld.2017.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review discusses completed phase II randomized clinical trials with high-quality published results for compounds that demonstrate effects on nonalcoholic steatohepatitis histology (obeticholic acid, elafibranor, and liraglutide). The authors also review the available preliminary data on cenicriviroc and selonsertib, with or without simtuzumab's phase II studies. Finally, the authors briefly discuss compounds that have been tested but did not achieve the primary end point of histologic improvement and appeared in high-quality published articles (cysteamine bitartrate and long-chain polyunsaturated fatty acids).
Collapse
Affiliation(s)
- Samer Gawrieh
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN 46202, USA.
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Ampuero J, Sánchez-Torrijos Y, Aguilera V, Bellido F, Romero-Gómez M. Nuevas perspectivas terapéuticas en la esteatohepatitis no alcohólica. GASTROENTEROLOGIA Y HEPATOLOGIA 2018; 41:128-142. [DOI: 10.1016/j.gastrohep.2017.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
|
8
|
Abstract
Lifestyle modifications and optimization of the management of cardiometabolic comorbidities are currently the mainstay of treatment for patients with nonalcoholic fatty liver disease. Pharmacotherapy to halt or reverse hepatic histological injury and prevent the development of end-stage liver disease is specifically offered to patients with nonalcoholic steatohepatitis (NASH) and those with advanced fibrosis. In this review, the authors discuss the state of the art of various pharmacological agents for NASH. The efficacy of vitamin E and pioglitazone is reasonably well established in a selected group of patients with NASH. Current data do not offer convincing evidence for efficacy of pentoxifylline, long-chain polyunsaturated fatty acids, angiotensin receptor blockers, metformin, or ursodeoxycholic acid. They also discuss the state of several emerging agents for treating NASH including the farsenoid X receptor ligand, obeticholic acid.
Collapse
Affiliation(s)
- Samer Gawrieh
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Palmitoleic acid (n-7) attenuates the immunometabolic disturbances caused by a high-fat diet independently of PPARα. Mediators Inflamm 2014; 2014:582197. [PMID: 25147439 PMCID: PMC4131426 DOI: 10.1155/2014/582197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022] Open
Abstract
Palmitoleic acid (PMA) has anti-inflammatory and antidiabetic activities. Here we tested whether these effects of PMA on glucose homeostasis and liver inflammation, in mice fed with high-fat diet (HFD), are PPAR-α dependent. C57BL6 wild-type (WT) and PPAR-α-knockout (KO) mice fed with a standard diet (SD) or HFD for 12 weeks were treated after the 10th week with oleic acid (OLA, 300 mg/kg of b.w.) or PMA 300 mg/kg of b.w. Steatosis induced by HFD was associated with liver inflammation only in the KO mice, as shown by the increased hepatic levels of IL1-beta, IL-12, and TNF-α; however, the HFD increased the expression of TLR4 and decreased the expression of IL1-Ra in both genotypes. Treatment with palmitoleate markedly attenuated the insulin resistance induced by the HFD, increased glucose uptake and incorporation into muscle in vitro, reduced the serum levels of AST in WT mice, decreased the hepatic levels of IL1-beta and IL-12 in KO mice, reduced the expression of TLR-4 and increased the expression of IL-1Ra in WT mice, and reduced the phosphorylation of NF 𝜅B (p65) in the livers of KO mice. We conclude that palmitoleate attenuates diet-induced insulin resistance, liver inflammation, and damage through mechanisms that do not depend on PPAR-α.
Collapse
|