1
|
Liu H, Li M, Deng Y, Hou Y, Hou L, Zhang X, Zheng Z, Guo F, Sun K. The Roles of DMT1 in Inflammatory and Degenerative Diseases. Mol Neurobiol 2025; 62:6317-6332. [PMID: 39775481 DOI: 10.1007/s12035-025-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Iron homeostasis is critical for multiple physiological and pathological processes. DMT1, a core iron transporter, is expressed in almost all cells and organs and altered in response to various conditions, whereas, there is few reviews focusing on DMT1 in diseases associated with aberrant iron metabolism. Based on available knowledge, this review described a full view of DMT1 and summarized the roles of DMT1 and DMT1-mediated iron metabolism in the onset and development of inflammatory and degenerative diseases. This review also provided an overview of DMT1-related treatment in these disorders, highlighting its therapeutic potential in chronic inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Deng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Song J, Wang H, Gao X, Yang F, Zhu X, Qiao G, Gan T, Tao J. The serum hepcidin and the hepcidin/ferritin ratio in NAFLD: a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:62. [PMID: 39915727 PMCID: PMC11804044 DOI: 10.1186/s12876-025-03620-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver diseases characterized by hepatic steatosis exceeding 5% in the absence of alcohol and other liver-damaging factors. Clinical studies have identified a potential link between abnormal iron metabolism and the high incidence of NAFLD; however, the results from clinical trials remain inconsistent. This meta-analysis aims to compare serum hepcidin levels and the hepcidin/ferritin ratio between adults with NAFLD and those without to explore their potential relationship with NAFLD. METHODS A systematic search was conducted across the Web of Science platform, Cochrane, Scopus, Embase, and PubMed databases from their inception until December 18, 2024. The analysis primarily focused on serum hepcidin levels and the hepcidin/ferritin ratio. Observational studies comparing serum hepcidin levels and the hepcidin/ferritin ratio between individuals with NAFLD and control groups were included. A random-effects model was employed to calculate effect estimates, and outcomes were reported as standardized mean differences (SMD) with 95% confidence intervals (95% CI). RESULTS Following the systematic review, a total of 19 studies, comprising 2216 patients and 2125 controls, were included. The findings revealed a statistically significant difference in both hepcidin levels (SMD = 1.03, 95% CI: 0.49 to 1.56, p < 0.001) and the hepcidin/ferritin ratio (SMD = -1.13, 95% CI: -1.79 to -0.46, p < 0.001) between NAFLD and controls. Significant heterogeneity was observed across studies for both hepcidin (I² = 98.2%) and the hepcidin/ferritin ratio (I² = 93.3%), and the limited number of studies on hepcidin/ferritin were acknowledged as key limitations. Subgroup analysis revealed that patients with obesity exhibited higher levels of hepcidin (SMD = 1.12, 95% CI: 0.40 to 1.97) than overweight (SMD = 0.88, 95% CI: 0.05 to 1.72). Meta-regression analysis identified the hepcidin measurement method (p < 0.01), male-to-female ratio (p < 0.01), and study quality (p < 0.01) as significant moderators of the observed heterogeneity. CONCLUSION This meta-analysis revealed a significant association between hepcidin levels, the hepcidin/ferritin ratio and NAFLD in adults. Further investigations are needed to fully elucidate the role of these variables in iron metabolism and their potential impact on the diagnosis, prevention, and management of NAFLD.
Collapse
Affiliation(s)
- Jingmin Song
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Heqing Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiaolian Gao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Hubei Shizhen Laboratory, Wuhan, 430065, China.
| | - Fen Yang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xinhong Zhu
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Guiyuan Qiao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Ting Gan
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Junxiu Tao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China.
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
| |
Collapse
|
3
|
Skrypnik K, Olejnik-Schmidt A, Mikołajczyk-Stecyna J, Schmidt M, Suliburska J. Influence of supplementation with probiotic bacteria Lactiplantibacillus plantarum and Latilactobacillus curvatus on selected parameters of duodenum iron metabolism in rats on a high-fat, iron-deficient diet. Nutrition 2025; 129:112591. [PMID: 39442381 DOI: 10.1016/j.nut.2024.112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES A high-fat, iron (Fe)-deficient Western diet induces obesity and dysregulates Fe metabolism. We compared the influence of Lactiplantibacillus plantarum and Latilactobacillus curvatus with and without Fe supplementation on duodenal Fe uptake under high-fat diet conditions. METHODS Rats were fed a high-fat diet (HF group) or high-fat, Fe-deficient diet (HFDEF group) or control diet (C group) for 8 wk. For the next 8 wk, the rats in the C and HF groups continued on the same diet, whereas the rats in the HFDEF group were divided into six groups and fed high-fat, Fe-deficient diet combinations with L. plantarum (Lp), L. curvatus (Lc), and Fe supplementation (HFDEF, HFDEFFe, HFDEFLp, HFDEFLc, HFDEFFeLp, HFDEFFeLc). Duodenum and serum samples were collected for analysis. RESULTS In the duodenum, the Fe content was higher in the HFDEFFeLp and HFDEFFeLc groups; the ferroportin level was higher in the HFDEFFeLp and HFDEFFeLc groups versus the HF group; the divalent metal transporter 1 level was higher in the HFDEFFeLc group versus the C and HF groups; and duodenal cytochrome B was higher in the HFDEFLc versus all the other groups. In addition, duodenal expression of the solute carrier family 11 member 2 gene was higher in the HFDEF group versus the C, HF, HFDEFFe, HFDEFFeLp, and HFDEFFeLc groups; that of the TFRC gene was higher in the HFDEFFeLc group versus the C, HF, HFDEF, and HFDEFFe groups; and that of the HJV gene was higher in the HFDEFFeLp group versus the C, HF, HFDEF, HFDEFFe, and HFDEFLc groups. CONCLUSIONS L. plantarum and L. curvatus supplementation shows some potential to enhance duodenal cellular Fe uptake in rats on a high-fat, Fe-deficient diet.
Collapse
Affiliation(s)
- Katarzyna Skrypnik
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Suliburska
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
4
|
Tao L, Yang X, Ge C, Zhang P, He W, Xu X, Li X, Chen W, Yu Y, Zhang H, Chen SD, Pan XY, Su Y, Xu C, Yu Y, Zheng MH, Min J, Wang F. Integrative clinical and preclinical studies identify FerroTerminator1 as a potent therapeutic drug for MASH. Cell Metab 2024; 36:2190-2206.e5. [PMID: 39142286 DOI: 10.1016/j.cmet.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
The complex etiological factors associated with metabolic dysfunction-associated fatty liver disease (MAFLD), including perturbed iron homeostasis, and the unclear nature by which they contribute to disease progression have resulted in a limited number of effective therapeutic interventions. Here, we report that patients with metabolic dysfunction-associated steatohepatitis (MASH), a pathological subtype of MAFLD, exhibit excess hepatic iron and that it has a strong positive correlation with disease progression. FerroTerminator1 (FOT1) effectively reverses liver injury across multiple MASH models without notable toxic side effects compared with clinically approved iron chelators. Mechanistically, our multi-omics analyses reveal that FOT1 concurrently inhibits hepatic iron accumulation and c-Myc-Acsl4-triggered ferroptosis in various MASH models. Furthermore, MAFLD cohort studies suggest that serum ferritin levels might serve as a predictive biomarker for FOT1-based therapy in MASH. These findings provide compelling evidence to support FOT1 as a promising novel therapeutic option for all stages of MAFLD and for future clinical trials.
Collapse
Affiliation(s)
- Liang Tao
- School of Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinquan Yang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Chaodong Ge
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Peng Zhang
- School of Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenjian He
- School of Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xingbo Xu
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Li
- School of Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yingying Yu
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huai Zhang
- Department of Biostatistics and Medical Record, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yan Pan
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunxing Su
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Fudi Wang
- School of Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China; School of Public Health, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
5
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
6
|
Makri E, Orfanidou M, Makri ES, Goulas A, Terpos E, Polyzos SA. Circulating Ferritin in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. J Clin Exp Hepatol 2024; 14:101353. [PMID: 38435724 PMCID: PMC10905002 DOI: 10.1016/j.jceh.2024.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Objectives To synthesize data on circulating ferritin between patients with histologically confirmed nonalcoholic fatty liver disease (NAFLD) and non-NAFLD controls. Methods A systematic literature search was conducted in PubMed, Scopus, and the Cochrane Library. Thirty-one studies comprising data on 5631 individuals (2929 biopsy-proven NAFLD patients and 2702 controls) were included in the meta-analysis. Results Higher circulating ferritin levels were observed in NAFLD patients than in controls [standardized mean difference (SMD) 1.14; 95% confidence interval (95% CI) 0.73-1.55], in patients with simple nonalcoholic fatty liver (NAFL) than in controls (SMD 0.57; 95% CI 0.34-0.80), in patients with nonalcoholic steatohepatitis (NASH) than in controls (SMD 0.95; 95% CI 0.69-1.22), and in NASH than in NAFL patients (SMD 0.62; 95% CI 0.25-0.99). There was moderate-to-high heterogeneity among studies in the above pairs of comparisons (I2 = 68-97%); no risk of publication bias was observed by Egger's test (P = 0.81, P = 0.72, P = 0.59, P = 0.42, respectively). The heterogeneity was reduced in the subgroup of biopsy-proven controls in all pairs of comparisons (I2 = 0-65%). The heterogeneity was also reduced after excluding studies with the Newcastle-Ottawa Scale (NOS) score <7 (n = 10) for the comparison of NAFLD patients vs. controls (I2 = 54%, P = 0.02). The meta-regression analysis revealed that the male ratio was positively associated with ferritin SMD in the comparison between NAFLD patients and controls and accounted for 32.7% (P = 0.002) of the heterogeneity in this pair of comparison. Conclusions Circulating ferritin was higher in NAFLD (or NAFL or NASH) patients compared with controls. Higher levels of circulating ferritin were also associated with the severity of the disease, which, however, should be cautiously interpreted.PROSPERO registration ID: CRD42022354025.
Collapse
Affiliation(s)
- Eleftheria Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Myrsini Orfanidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia S. Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Zhou QY, Ren C, Li JY, Wang L, Duan Y, Yao RQ, Tian YP, Yao YM. The crosstalk between mitochondrial quality control and metal-dependent cell death. Cell Death Dis 2024; 15:299. [PMID: 38678018 PMCID: PMC11055915 DOI: 10.1038/s41419-024-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Ren-Qi Yao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ying-Ping Tian
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
8
|
Long C, Zhou X, Xia F, Zhou B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. BIOLOGY 2024; 13:243. [PMID: 38666855 PMCID: PMC11048184 DOI: 10.3390/biology13040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a type of metabolic stress liver injury closely related to insulin resistance (IR) and genetic susceptibility without alcohol consumption, which encompasses a spectrum of liver disorders ranging from simple hepatic lipid accumulation, known as steatosis, to the more severe form of steatohepatitis (NASH). NASH can progress to cirrhosis and hepatocellular carcinoma (HCC), posing significant health risks. As a multisystem disease, NAFLD is closely associated with systemic insulin resistance, central obesity, and metabolic disorders, which contribute to its pathogenesis and the development of extrahepatic complications, such as cardiovascular disease (CVD), type 2 diabetes mellitus, chronic kidney disease, and certain extrahepatic cancers. Recent evidence highlights the indispensable roles of intestinal barrier dysfunction and gut microbiota in the onset and progression of NAFLD/NASH. This review provides a comprehensive insight into the role of intestinal barrier dysfunction and gut microbiota in NAFLD, including intestinal barrier function and assessment, inflammatory factors, TLR4 signaling, and the gut-liver axis. Finally, we conclude with a discussion on the potential therapeutic strategies targeting gut permeability and gut microbiota in individuals with NAFLD/NASH, such as interventions with medications/probiotics, fecal transplantation (FMT), and modifications in lifestyle, including exercise and diet.
Collapse
Affiliation(s)
- Changrui Long
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Zhou
- Department of Cardiovascular, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Sehenzhen 518107, China;
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
9
|
Kawano Y, Tanaka M, Satoh Y, Sugino S, Suzuki J, Fujishima M, Okumura E, Takekoshi H, Uehara O, Sugita S, Abiko Y, Tomonari T, Tanaka H, Takeda H, Takayama T. Acanthopanax senticosus ameliorates steatohepatitis through HNF4 alpha pathway activation in mice. Sci Rep 2024; 14:110. [PMID: 38167633 PMCID: PMC10762184 DOI: 10.1038/s41598-023-50625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Non-alcoholic fatty liver disease is a common liver disease worldwide, and is associated with dysregulation of lipid metabolism, leading to inflammation and fibrosis. Acanthopanax senticosus Harms (ASH) is widely used in traditional medicine as an adaptogen food. We examined the effect of ASH on steatohepatitis using a high-fat diet mouse model. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet with ASH extract (ASHE). After 6 weeks, liver RNA transcriptome sequencing (RNA-Seq) was performed, followed by Ingenuity Pathway Analysis (IPA). Our findings revealed that mice fed a high-fat diet with 5% ASHE exhibited significantly reduced liver steatosis. These mice also demonstrated alleviated inflammation and reduced fibrosis in the liver. IPA of RNA-Seq indicated that hepatocyte nuclear factor 4 alpha (HNF4 alpha), a transcription factor, was the activated upstream regulator (P-value 0.00155, z score = 2.413) in the liver of ASHE-fed mice. Adenosine triphosphate binding cassette transporter 8 and carboxylesterase 2, downstream targets of HNF4 alpha pathway, were upregulated. Finally, ASHE-treated HepG2 cells exposed to palmitate exhibited significantly decreased lipid droplet contents. Our study provides that ASHE can activate HNF4 alpha pathway and promote fat secretion from hepatocytes, thereby serving as a prophylactic treatment for steatohepatitis in mice.
Collapse
Affiliation(s)
- Yutaka Kawano
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, Tokushima, 770-0042, Japan.
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan.
| | - Maki Tanaka
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, 002-8072, Japan
| | - Yasushi Satoh
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| | - Shigekazu Sugino
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Jun Suzuki
- Department of Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Masaki Fujishima
- Production and Development Department, Sun Chlorella Co., Ltd, Kyoto, 600-8177, Japan
| | - Eri Okumura
- Production and Development Department, Sun Chlorella Co., Ltd, Kyoto, 600-8177, Japan
| | - Hideo Takekoshi
- Production and Development Department, Sun Chlorella Co., Ltd, Kyoto, 600-8177, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293, Japan
| | - Tetsu Tomonari
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| | - Hironori Tanaka
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| | - Hidekatsu Takeda
- Department of Physical Therapy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8543, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-0042, Japan
| |
Collapse
|
10
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Zhu B, Wei Y, Zhang M, Yang S, Tong R, Li W, Long E. Metabolic dysfunction-associated steatotic liver disease: ferroptosis related mechanisms and potential drugs. Front Pharmacol 2023; 14:1286449. [PMID: 38027027 PMCID: PMC10665502 DOI: 10.3389/fphar.2023.1286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
Collapse
Affiliation(s)
- Baoqiang Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingming Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenyuan Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Enwu Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Xu GX, Wei S, Yu C, Zhao SQ, Yang WJ, Feng YH, Pan C, Yang KX, Ma Y. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. Front Cell Dev Biol 2023; 11:1199519. [PMID: 37261074 PMCID: PMC10228659 DOI: 10.3389/fcell.2023.1199519] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging as the leading causes of liver disease worldwide. These conditions can lead to cirrhosis, liver cancer, liver failure, and other related ailments. At present, liver transplantation remains the sole treatment option for end-stage NASH, leading to a rapidly growing socioeconomic burden. Kupffer cells (KCs) are a dominant population of macrophages that reside in the liver, playing a crucial role in innate immunity. Their primary function includes phagocytosing exogenous substances, presenting antigens, and triggering immune responses. Moreover, they interact with other liver cells during the pathogenesis of NAFLD, and this crosstalk may either delay or exacerbate disease progression. Stimulation by endogenous signals triggers the activation of KCs, resulting in the expression of various inflammatory factors and chemokines, such as NLRP3, TNF-α, IL-1B, and IL-6, and contributing to the inflammatory cascade. In the past 5 years, significant advances have been made in understanding the biological properties and immune functions of KCs in NAFLD, including their interactions with tissue molecules, underlying molecular mechanisms, signaling pathways, and relevant therapeutic interventions. Having a comprehensive understanding of these mechanisms and characteristics can have enormous potential in guiding future strategies for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yong Ma
- *Correspondence: Kun-Xing Yang, ; Yong Ma,
| |
Collapse
|
13
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
14
|
Kasano-Camones CI, Takizawa M, Ohshima N, Saito C, Iwasaki W, Nakagawa Y, Fujitani Y, Yoshida R, Saito Y, Izumi T, Terawaki SI, Sakaguchi M, Gonzalez FJ, Inoue Y. PPARα activation partially drives NAFLD development in liver-specific Hnf4a-null mice. J Biochem 2023; 173:393-411. [PMID: 36779417 PMCID: PMC10433406 DOI: 10.1093/jb/mvad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
HNF4α regulates various genes to maintain liver function. There have been reports linking HNF4α expression to the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis. In this study, liver-specific Hnf4a-deficient mice (Hnf4aΔHep mice) developed hepatosteatosis and liver fibrosis, and they were found to have difficulty utilizing glucose. In Hnf4aΔHep mice, the expression of fatty acid oxidation-related genes, which are PPARα target genes, was increased in contrast to the decreased expression of PPARα, suggesting that Hnf4aΔHep mice take up more lipids in the liver instead of glucose. Furthermore, Hnf4aΔHep/Ppara-/- mice, which are simultaneously deficient in HNF4α and PPARα, showed improved hepatosteatosis and fibrosis. Increased C18:1 and C18:1/C18:0 ratio was observed in the livers of Hnf4aΔHep mice, and the transactivation of PPARα target gene was induced by C18:1. When the C18:1/C18:0 ratio was close to that of Hnf4aΔHep mouse liver, a significant increase in transactivation was observed. In addition, the expression of Pgc1a, a coactivator of PPARs, was increased, suggesting that elevated C18:1 and Pgc1a expression could contribute to PPARα activation in Hnf4aΔHep mice. These insights may contribute to the development of new diagnostic and therapeutic approaches for NAFLD by focusing on the HNF4α and PPARα signaling cascade.
Collapse
Affiliation(s)
- Carlos Ichiro Kasano-Camones
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masayuki Takizawa
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Chinatsu Saito
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Wakana Iwasaki
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yuko Nakagawa
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Yoshio Fujitani
- Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ryo Yoshida
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Yoshifumi Saito
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
- Faculty of Health Care, Teikyo Heisei University, Tokyo 170-8445, Japan
| | - Shin-Ichi Terawaki
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20852, USA
| | - Yusuke Inoue
- Laboratory of Metabolism, Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
- Gunma University Center for Food Science and Wellness, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
15
|
Cheng Z, Chu H, Zhu Q, Yang L. Ferroptosis in non-alcoholic liver disease: Molecular mechanisms and therapeutic implications. Front Nutr 2023; 10:1090338. [PMID: 36992907 PMCID: PMC10040549 DOI: 10.3389/fnut.2023.1090338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis refers to a novel modality of regulated cell death characterized by excessive iron accumulation and overwhelming lipid peroxidation, which takes an important part in multiple pathological processes associated with cell death. Considering the crucial roles of the liver in iron and lipid metabolism and its predisposition to oxidative insults, more and more studies have been conducted to explore the relationship between ferroptosis and various liver disorders, including non-alcoholic fatty liver disease (NAFLD). With increased morbidity and high mortality rates, NAFLD has currently emerged as a global public health issue. However, the etiology of NAFLD is not fully understood. In recent years, an accumulating body of evidence have suggested that ferroptosis plays a pivotal role in the pathogenesis of NAFLD, but the precise mechanisms underlying how ferroptosis affects NAFLD still remain obscure. Here, we summarize the molecular mechanisms of ferroptosis and its complicated regulation systems, delineate the different effects that ferroptosis exerts in different stages of NAFLD, and discuss some potential effective therapies targeting ferroptosis for NAFLD treatment, which putatively points out a novel direction for NAFLD treatment.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingjing Zhu
- Jinyintan Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qingjing Zhu,
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ling Yang, ,
| |
Collapse
|
16
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
17
|
Hino K, Yanatori I, Hara Y, Nishina S. Iron and liver cancer: an inseparable connection. FEBS J 2022; 289:7810-7829. [PMID: 34543507 DOI: 10.1111/febs.16208] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Iron is an essential element for all organisms. Iron-containing proteins play critical roles in cellular functions. The biological importance of iron is largely attributable to its chemical properties as a transitional metal. However, an excess of 'free' reactive iron damages the macromolecular components of cells and cellular DNA through the production of harmful free radicals. On the contrary, most of the body's excess iron is stored in the liver. Not only hereditary haemochromatosis but also some liver diseases with mild-to-moderate hepatic iron accumulation, such as chronic hepatitis C, alcoholic liver disease and nonalcoholic steatohepatitis, are associated with a high risk for liver cancer development. These findings have attracted attention to the causative and promotive roles of iron in the development of liver cancer. In the last decade, accumulating evidence regarding molecules regulating iron metabolism or iron-related cell death programmes such as ferroptosis has shed light on the relationship between hepatic iron accumulation and hepatocarcinogenesis. In this review, we briefly present the current molecular understanding of iron regulation in the liver. Next, we describe the mechanisms underlying dysregulated iron metabolism depending on the aetiology of liver diseases. Finally, we discuss the causative and promotive roles of iron in cancer development.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
18
|
Ma C, Han L, Zhu Z, Heng Pang C, Pan G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem Pharmacol 2022; 205:115242. [PMID: 36084708 DOI: 10.1016/j.bcp.2022.115242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide. Minerals including iron, copper, zinc, and selenium, fulfil an essential role in various biochemical processes. Moreover, the identification of ferroptosis and cuproptosis further underscores the importance of intracellular mineral homeostasis. However, perturbation of minerals has been frequently reported in patients with NAFLD and related diseases. Interestingly, studies have attempted to establish an association between mineral disorders and NAFLD pathological features, including oxidative stress, mitochondrial dysfunction, inflammatory response, and fibrogenesis. In this review, we aim to provide an overview of the current understanding of mineral metabolism (i.e., absorption, utilization, and transport) and mineral interactions in the pathogenesis of NAFLD. More importantly, this review highlights potential therapeutic strategies, challenges, future directions for targeting mineral metabolism in the treatment of NAFLD.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Hsu CC, Senussi NH, Fertrin KY, Kowdley KV. Iron overload disorders. Hepatol Commun 2022; 6:1842-1854. [PMID: 35699322 PMCID: PMC9315134 DOI: 10.1002/hep4.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 01/19/2023] Open
Abstract
Iron overload disorders represent a variety of conditions that lead to increased total body iron stores and resultant end-organ damage. An elevated ferritin and transferrin-iron saturation can be commonly encountered in the evaluation of elevated liver enzymes. Confirmatory homeostatic iron regulator (HFE) genetic testing for C282Y and H63D, mutations most encountered in hereditary hemochromatosis, should be pursued in evaluation of hyperferritinemia. Magnetic resonance imaging with quantitative assessment of iron content or liver biopsy (especially if liver disease is a cause of iron overload) should be used as appropriate. A secondary cause for iron overload should be considered if HFE genetic testing is negative for the C282Y homozygous or C282Y/H63D compound heterozygous mutations. Differential diagnosis of secondary iron overload includes hematologic disorders, iatrogenic causes, or chronic liver diseases. More common hematologic disorders include thalassemia syndromes, myelodysplastic syndrome, myelofibrosis, sideroblastic anemias, sickle cell disease, or pyruvate kinase deficiency. If iron overload has been excluded, evaluation for causes of hyperferritinemia should be pursued. Causes of hyperferritinemia include chronic liver disease, malignancy, infections, kidney failure, and rheumatic conditions, such as adult-onset Still's disease or hemophagocytic lymphohistiocytosis. In this review, we describe the diagnostic testing of patients with suspected hereditary hemochromatosis, the evaluation of patients with elevated serum ferritin levels, and signs of secondary overload and treatment options for those with secondary iron overload.
Collapse
Affiliation(s)
- Christine C Hsu
- Medstar Georgetown University HospitalMedstar Georgetown Transplant InstituteWashingtonDistrict of ColumbiaUSA
| | - Nizar H Senussi
- Gastroenterology and HepatologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Kleber Y Fertrin
- Division of HematologyDepartment of MedicineUniversity of WashingtonWashingtonUSA
| | - Kris V Kowdley
- Liver Institute Northwest and Elson S. Floyd College of MedicineWashington State UniversityWashingtonUSA
| |
Collapse
|
20
|
Zhao Y, Wang C, Yang T, Wang H, Zhao S, Sun N, Chen Y, Zhang H, Fan H. Chlorogenic Acid Alleviates Chronic Stress-Induced Duodenal Ferroptosis via the Inhibition of the IL-6/JAK2/STAT3 Signaling Pathway in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4353-4361. [PMID: 35380825 DOI: 10.1021/acs.jafc.2c01196] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chronic stress causes duodenal damage, in which iron death is likely to play an important role. Chlorogenic acid (CGA), one of the most widely consumed dietary polyphenols, has been shown to protect the intestine. However, it is unclear whether CGA exerts a duodenoprotective effect in chronic stress by inhibiting ferroptosis. In this work, rats were daily exposed to restraint stress for 6 h over 21 consecutive days, with/without CGA (100 mg/kg, gavage). CGA reduced blood hepcidin, iron, reactive oxygen species (ROS), and ferroportin 1 (FPN1) levels and upregulated the levels of ferroptosis-related biomarkers (GPX4, GSH, NADPH, etc.). These results confirmed that CGA inhibited ferroptosis in the duodenum. Furthermore, the use of S3I-201 (STAT3 inhibitor) helped to further clarify the mechanism of action of CGA. Overall, CGA could reduce hepcidin production by inhibiting the IL-6/JAK2/STAT3 pathway in the liver to increase the expression of FPN1 in the duodenum, which restored iron homeostasis and inhibited ferroptosis, alleviating chronic stress-induced duodenal injury.
Collapse
Affiliation(s)
- Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
21
|
Li LX, Guo FF, Liu H, Zeng T. Iron overload in alcoholic liver disease: underlying mechanisms, detrimental effects, and potential therapeutic targets. Cell Mol Life Sci 2022; 79:201. [PMID: 35325321 PMCID: PMC11071846 DOI: 10.1007/s00018-022-04239-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is a global public health challenge due to the high incidence and lack of effective therapeutics. Evidence from animal studies and ALD patients has demonstrated that iron overload is a hallmark of ALD. Ethanol exposure can promote iron absorption by downregulating the hepcidin expression, which is probably mediated by inducing oxidative stress and promoting erythropoietin (EPO) production. In addition, ethanol may enhance iron uptake in hepatocytes by upregulating the expression of transferrin receptor (TfR). Iron overload in the liver can aggravate ethanol-elicited liver damage by potentiating oxidative stress via Fenton reaction, promoting activation of Kupffer cells (KCs) and hepatic stellate cells (HSCs), and inducing a recently discovered programmed iron-dependent cell death, ferroptosis. This article reviews the current knowledge of iron metabolism, regulators of iron homeostasis, the mechanism of ethanol-induced iron overload, detrimental effects of iron overload in the liver, and potential therapeutic targets.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
22
|
Huynh U, Qiao M, King J, Trinh B, Valdez J, Haq M, Zastrow ML. Differential Effects of Transition Metals on Growth and Metal Uptake for Two Distinct Lactobacillus Species. Microbiol Spectr 2022; 10:e0100621. [PMID: 35080431 PMCID: PMC8791193 DOI: 10.1128/spectrum.01006-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Muxin Qiao
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - John King
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Brittany Trinh
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Juventino Valdez
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Marium Haq
- Department of Chemistry, University of Houston, Houston, Texas, United States
| | - Melissa L. Zastrow
- Department of Chemistry, University of Houston, Houston, Texas, United States
| |
Collapse
|
23
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FXZ, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021; 9:701788. [PMID: 34307381 PMCID: PMC8299754 DOI: 10.3389/fcell.2021.701788] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Ferroptosis is classified as an iron-dependent form of regulated cell death (RCD) attributed to the accumulation of lipid hydroperoxides and redox imbalance. In recent years, accumulating researches have suggested that ferroptosis may play a vital role in the development of diverse metabolic diseases, for example, diabetes and its complications (e.g., diabetic nephropathy, diabetic cardiomyopathy, diabetic myocardial ischemia/reperfusion injury and atherosclerosis [AS]), metabolic bone disease and adrenal injury. However, the specific physiopathological mechanism and precise therapeutic effect is still not clear. In this review, we summarized recent advances about the development of ferroptosis, focused on its potential character as the therapeutic target in metabolic diseases, and put forward our insights on this topic, largely to offer some help to forecast further directions.
Collapse
Affiliation(s)
- Jia-Yue Duan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Lu Ou-Yang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
MUTYH is associated with hepatocarcinogenesis in a non-alcoholic steatohepatitis mouse model. Sci Rep 2021; 11:3599. [PMID: 33574380 PMCID: PMC7878918 DOI: 10.1038/s41598-021-83138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH)-related HCC is associated with oxidative stress. However, the mechanisms underlying the development of NASH-related HCC is unclear. MUTYH is one of the enzymes that is involved in repair of oxidative DNA damage. The aim of this study was to investigate the association between MUTYH and NASH-related hepatocarcinogenesis. MUTYH wild-type (Mutyh+/+), heterozygous (Mutyh+/-), and MUTYH-null (Mutyh-/-) mice were fed a high-fat high-cholesterol (HFHC) diet or HFHC + high iron diet (20 mice per group) for 9 months. Five of 20 Mutyh-/- mice fed an HFHC + high iron diet developed liver tumors, and they developed more liver tumors than other groups (especially vs. Mutyh+/+ fed an HFHC diet, P = 0.0168). Immunohistochemical analysis revealed significantly higher accumulation of oxidative stress markers in mice fed an HFHC + high iron diet. The gene expression profiles in the non-tumorous hepatic tissues were compared between wild-type mice that developed no liver tumors and MUTYH-null mice that developed liver tumors. Gene Set Enrichment Analysis identified the involvement of the Wnt/β-catenin signaling pathway and increased expression of c-Myc in MUTYH-null liver. These findings suggest that MUTYH deficiency is associated with hepatocarcinogenesis in patients with NASH with hepatic iron accumulation.
Collapse
|
25
|
Wang C, Wang X, Song G, Xing H, Yang L, Han K, Chang YZ. A high-fructose diet in rats induces systemic iron deficiency and hepatic iron overload by an inflammation mechanism. J Food Biochem 2020; 45:e13578. [PMID: 33289147 DOI: 10.1111/jfbc.13578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) correlates with the high intake of fructose-rich soft drinks. Both inflammation and dysregulated iron metabolism are pathogenic factors in the development of NAFLD. The present investigation assessed the effects of a high-fructose diet (HF diet) on inflammation and iron metabolism. In this study, rats were fed a control or HF diet for 4, 8, or 12 weeks, after which insulin resistance, transaminases levels, serum and liver lipid profiles, inflammatory factors, and iron metabolism-related molecules were evaluated. The activities of the hepatic inflammation-associated pathways, IKKβ/NF-κB, and JAK2/STAT3, were detected by western blot. Result showed that the HF diet-fed animals developed a time-dependent serum lipid increase and hepatic lipid accumulation as well as insulin resistance. Serum iron (SI), serum ferritin (SF), and transferrin saturation (TS) decreased while total iron-binding capacity (TIBC) and serum transferrin (s-TF) increased at 8 and 12 weeks in the HF diet group. The HF diet led to increased transaminases levels at 8 and 12 weeks, and iron deposition was observed in the liver, accompanied by an upregulation of ferritin light chain (FTL), hepcidin (HEPC), transferrin (TF), transferrin receptor 1 (TfR1), iron regulatory protein 1 (IRP1), hemojuvelin (HJV), and divalent metal transporter 1 (DMT1). Moreover, ferroportin (FPN1) levels were downregulated, as expected from the increased HEPC. A progressive inflammation phenotype was apparent, with increased inflammatory factors, MDA, IL-1β, IL-6, and TNF-α, in the serum and liver tissue. Concomitantly, the hepatic IKKβ/NF-κB and JAK2/STAT3 pathways were activated. In summary, we verified that HF diet induces systemic iron deficiency and hepatic iron accumulation, likely due to the activation of inflammation via the NF-κB and JAK2/STAT3 pathways. PRACTICAL APPLICATIONS: As increasing numbers of individuals consume HF diets, the health implications of this type of over nutrition become globally relevant. Using a high-fructose diet rat model, our present study reveals inflammation as the link between a HF diet and dysregulated iron metabolism. Importantly, both inflammation and disrupted iron metabolism have been shown to be pathogenic factors in nonalcoholic fatty liver disease (NAFLD). The iron regulatory hormone, HEPC, is a link between the liver, inflammation, and iron metabolism. As fructose-rich foods become increasingly abundant and people's fructose intake increases, the impact of high fructose on health requires increased attention. Little research has been conducted on the effects of fructose on iron metabolism. Our study provides useful insights into the prevention and treatment of iron metabolism disorders arising from metabolic syndrome.
Collapse
Affiliation(s)
- Chao Wang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China.,Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangyao Song
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Hanying Xing
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linquan Yang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Kang Han
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
26
|
Kanaka S, Kawano Y, Yokomuro S, Ando F, Itokawa N, Hatori T, Matsumoto K, Zen Y, Miyashita M, Yoshida H. Hemochromatosis and Hepatocellular Carcinoma Secondary to Immunoglobulin G4-Related Disease with Hepatopathy: A Case Report. J NIPPON MED SCH 2020; 88:138-144. [PMID: 32741904 DOI: 10.1272/jnms.jnms.2021_88-306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a recently characterized illness in which lymphocytes and plasma cells infiltrate various anatomical sites. IgG4-hepatopathy, a manifestation of IgG4-RD, is a broader term covering various patterns of liver injury. The clinical course, including the malignant potential of IgG4-RD, remains unclear. Here we report the first case of secondary hemochromatosis and hepatocellular carcinoma (HCC) developing from IgG4-hepatopathy. A 67-year-old man was admitted to our hospital for treatment of deteriorating glucose tolerance. Blood test results showed hypergammaglobulinemia, especially IgG4. He was readmitted 2 months later with dyspnea due to lung disease and pleural effusion, and elevated transaminase levels. He underwent liver and lung biopsies. IgG4-RD was diagnosed and he was treated with steroid therapy, which improved serum IgG4 levels and imaging abnormalities. A follow-up computed tomography (CT) scan conducted 38 months later revealed a tumor (diameter, 50 mm) in liver segments 7 and 8. The resected specimen revealed HCC and abundant siderosis in the background liver, indicating a diagnosis of hemochromatosis. IgG4-positive cells were scarce, probably because of corticosteroid therapy. In the present case, IgG4-RD was well controlled with prednisolone (PSL) and an immunosuppressive agent, and chronic hepatitis was not severe, even though the patient subsequently developed HCC. However, extensive siderosis consistent with hemochromatosis was unexpectedly noted. These findings suggest that secondary hemochromatosis and HCC developed during IgG4-RD with hepatopathy. We believe this case sheds light on IgG4-RD.
Collapse
Affiliation(s)
| | - Youichi Kawano
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | - Shigeki Yokomuro
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | - Fumihiko Ando
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | - Norio Itokawa
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Chiba Hokusoh Hospital
| | - Tsutomu Hatori
- Department of Clinical Pathology, Nippon Medical School Chiba Hokusoh Hospital
| | | | - Yoh Zen
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine
| | - Masao Miyashita
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital
| | | |
Collapse
|
27
|
Molecular Mechanisms Underlying Hepatocellular Carcinoma Induction by Aberrant NRF2 Activation-Mediated Transcription Networks: Interaction of NRF2-KEAP1 Controls the Fate of Hepatocarcinogenesis. Int J Mol Sci 2020; 21:ijms21155378. [PMID: 32751080 PMCID: PMC7432811 DOI: 10.3390/ijms21155378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
NF-E2-related factor 2 (NRF2) is a basic leucine zipper transcription factor, a master regulator of redox homeostasis regulating a variety of genes for antioxidant and detoxification enzymes. NRF2 was, therefore, initially thought to protect the liver from oxidative stress. Recent studies, however, have revealed that mutations in NRF2 cause aberrant accumulation of NRF2 in the nucleus and exert the upregulation of NRF2 target genes. Moreover, among all molecular changes in hepatocellular carcinoma (HCC), NRF2 activation has been revealed as a more prominent pathway contributing to the progression of precancerous lesions to malignancy. Nevertheless, how its activation leads to poor prognosis in HCC patients remains unclear. In this review, we provide an overview of how aberrant activation of NRF2 triggers HCC development. We also summarize the emerging roles of other NRF family members in liver cancer development.
Collapse
|
28
|
Molecular Mechanisms Regulating Obesity-Associated Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051290. [PMID: 32443737 PMCID: PMC7281233 DOI: 10.3390/cancers12051290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global, intractable issue, altering inflammatory and stress response pathways, and promoting tissue adiposity and tumorigenesis. Visceral fat accumulation is correlated with primary tumor recurrence, poor prognosis and chemotherapeutic resistance. Accumulating evidence highlights a close association between obesity and an increased incidence of hepatocellular carcinoma (HCC). Obesity drives HCC, and obesity-associated tumorigenesis develops via nonalcoholic fatty liver (NAFL), progressing to nonalcoholic steatohepatitis (NASH) and ultimately to HCC. The better molecular elucidation and proteogenomic characterization of obesity-associated HCC might eventually open up potential therapeutic avenues. The mechanisms relating obesity and HCC are correlated with adipose tissue remodeling, alteration in the gut microbiome, genetic factors, ER stress, oxidative stress and epigenetic changes. During obesity-related hepatocarcinogenesis, adipokine secretion is dysregulated and the nuclear factor erythroid 2 related factor 1 (Nrf-1), nuclear factor kappa B (NF-κB), mammalian target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways are activated. This review captures the present trends allied with the molecular mechanisms involved in obesity-associated hepatic tumorigenesis, showcasing next generation molecular therapeutic strategies and their mechanisms for the successful treatment of HCC.
Collapse
|
29
|
Macías-Rodríguez RU, Inzaugarat ME, Ruiz-Margáin A, Nelson LJ, Trautwein C, Cubero FJ. Reclassifying Hepatic Cell Death during Liver Damage: Ferroptosis-A Novel Form of Non-Apoptotic Cell Death? Int J Mol Sci 2020; 21:1651. [PMID: 32121273 PMCID: PMC7084577 DOI: 10.3390/ijms21051651] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has emerged as a new type of cell death in different pathological conditions, including neurological and kidney diseases and, especially, in different types of cancer. The hallmark of this regulated cell death is the presence of iron-driven lipid peroxidation; the activation of key genes related to this process such as glutathione peroxidase-4 (gpx4), acyl-CoA synthetase long-chain family member-4 (acsl4), carbonyl reductase [NADPH] 3 (cbr3), and prostaglandin peroxidase synthase-2 (ptgs2); and morphological changes including shrunken and electron-dense mitochondria. Iron overload in the liver has long been recognized as both a major trigger of liver damage in different diseases, and it is also associated with liver fibrosis. New evidence suggests that ferroptosis might be a novel type of non-apoptotic cell death in several liver diseases including non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), drug-induced liver injury (DILI), viral hepatitis, and hemochromatosis. The interaction between iron-related lipid peroxidation, cellular stress signals, and antioxidant systems plays a pivotal role in the development of this novel type of cell death. In addition, integrated responses from lipidic mediators together with free iron from iron-containing enzymes are essential to understanding this process. The presence of ferroptosis and the exact mechanisms leading to this non-apoptotic type of cell death in the liver remain scarcely elucidated. Recognizing ferroptosis as a novel type of cell death in the liver could lead to the understanding of the complex interaction between different types of cell death, their role in progression of liver fibrosis, the development of new biomarkers, as well as the use of modulators of ferroptosis, allowing improved theranostic approaches in the clinic.
Collapse
Affiliation(s)
- Ricardo U. Macías-Rodríguez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Liver Fibrosis and Nutrition Lab (LFN Lab), Mexico City 14080, Mexico
| | - María Eugenia Inzaugarat
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
| | - Astrid Ruiz-Margáin
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Liver Fibrosis and Nutrition Lab (LFN Lab), Mexico City 14080, Mexico
| | - Leonard J. Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, UK;
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; (M.E.I.); (C.T.)
| | - Francisco Javier Cubero
- MICTLÁN-Network (Mechanisms of Liver Injury, Cell Death and Translational Nutrition in Liver Diseases Research Network), Mexico City 14080, Mexico
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
30
|
Ghadimi D, Yoness Hassan MF, Fölster-Holst R, Röcken C, Ebsen M, de Vrese M, Heller KJ. Regulation of hepcidin/iron-signalling pathway interactions by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers. Immunobiology 2020; 225:151874. [DOI: 10.1016/j.imbio.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
31
|
Low DMT1 Expression Associates With Increased Oxidative Phosphorylation and Early Recurrence in Hepatocellular Carcinoma. J Surg Res 2019; 234:343-352. [PMID: 30527495 DOI: 10.1016/j.jss.2018.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite a high rate of recurrences, long-term survival can be achieved after the resection of hepatocellular carcinoma (HCC) with effective local treatment. Discovery of adverse prognostic variables to identify patients with high risk of recurrence could improve the management of HCC. Accumulating evidence showing a link between carcinogenesis and increased expression of iron import proteins and intracellular iron prompted us to investigate a role of divalent metal-ion transporter-1 (DMT1) that binds and regulates a variety of divalent metals in HCC. MATERIALS AND METHODS Clinical and gene expression data from RNA seq in 369 HCC patients were obtained from The Cancer Genome Atlas. Disease-free survival was compared between DMT1 high- and low-expressing tumors, and gene set enrichment analysis was conducted. RESULTS Patients with lower expression of DMT1 exhibited significantly worse disease-free survival compared with the DMT1 high group (P = 0.044), notably in advanced-stage patients (P = 0.008). DMT1 expression did not differ in etiologies, stages, and differentiation status of HCC. Interestingly, DMT1 expression levels inversely associated with cellular respiratory function in HCC. Furthermore, gene set enrichment analysis revealed that metabolism-related gene sets such as glycolysis, oxidative phosphorylation, and reactive oxygen species pathway were significantly enriched in the DMT1 low-expressing HCC. CONCLUSIONS Low DMT1 expression associates with increased oxidative phosphorylation as well as glycolysis and identifies early recurrence in HCC patients after surgical treatment.
Collapse
|
32
|
Abe N, Tsuchida T, Yasuda SI, Oka K. Dietary iron restriction leads to a reduction in hepatic fibrosis in a rat model of non-alcoholic steatohepatitis. Biol Open 2019; 8:bio.040519. [PMID: 31097447 PMCID: PMC6550076 DOI: 10.1242/bio.040519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron overload in the liver causes oxidative stress and inflammation, which result in organ dysfunction, making it a risk factor for non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma. We aimed to evaluate the effect of dietary iron restriction on disease progression in rats fed a choline-deficient L-amino acid-defined (CDAA) diet. Male F344 rats were fed a choline-sufficient amino acid-defined (control) diet, a CDAA diet or an iron-restricted CDAA diet for 4, 8 and 12 weeks. At each time point, hepatic iron levels, oxidative stress, inflammation and fibrosis were evaluated by immunohistochemistry. The iron-restricted CDAA diet significantly decreased serum iron levels for 12 weeks compared with the CDAA diet. Histological analysis confirmed that feeding with the CDAA diet induced hepatic iron overload and that this was associated with oxidative stress (number of 8-hydroxydeoxyguanosine-positive cells), inflammation (CD68 positive area) and fibrosis (Sirius Red positive area). Iron restriction with the CDAA diet significantly led to a reduction in the hepatic iron levels, oxidative stress, inflammation and fibrosis. Therefore, dietary iron restriction could be a useful therapeutic approach for NASH patients with hepatic iron overload. Summary: We reveal that dietary iron restriction leads to a reduction in hepatic inflammation, oxidative stress and fibrosis in rats fed a choline-deficient L-amino acid-defined (CDAA) diet.
Collapse
Affiliation(s)
- Naomichi Abe
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Takuma Tsuchida
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Shin-Ichiro Yasuda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Kozo Oka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| |
Collapse
|
33
|
Arab JP, Arrese M, Trauner M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:321-350. [PMID: 29414249 DOI: 10.1146/annurev-pathol-020117-043617] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide and an important risk factor for both hepatic and cardiometabolic mortality. The rapidly increasing prevalence of this disease and of its aggressive form nonalcoholic steatohepatitis (NASH) will require novel therapeutic approaches based on a profound understanding of its pathogenesis to halt disease progression to advanced fibrosis or cirrhosis and cancer. The pathogenesis of NAFLD involves a complex interaction among environmental factors (i.e., Western diet), obesity, changes in microbiota, and predisposing genetic variants resulting in a disturbed lipid homeostasis and an excessive accumulation of triglycerides and other lipid species in hepatocytes. Insulin resistance is a central mechanism that leads to lipotoxicity, endoplasmic reticulum stress, disturbed autophagy, and, ultimately, hepatocyte injury and death that triggers hepatic inflammation, hepatic stellate cell activation, and progressive fibrogenesis, thus driving disease progression. In the present review, we summarize the currently available data on the pathogenesis of NAFLD, emphasizing the most recent advances. A better understanding of NAFLD/NASH pathogenesis is crucial for the design of new and efficient therapeutic interventions.
Collapse
Affiliation(s)
- Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria;
| |
Collapse
|
34
|
Miyanishi K, Tanaka S, Sakamoto H, Kato J. The role of iron in hepatic inflammation and hepatocellular carcinoma. Free Radic Biol Med 2019; 133:200-205. [PMID: 30017991 DOI: 10.1016/j.freeradbiomed.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
Iron is an essential for organisms and the liver plays a major role in its storage. In pathologic conditions, where iron absorption from the intestine or iron uptake into the hepatocytes is increased, excess iron accumulates in the hepatocytes, leading to hepatocyte injury through the production of free radicals. Iron exerts its toxicity by catalyzing the generation of reactive oxygen species (ROS). ROS causes cell injury by inducing damage to the lysosomal, cytoplasmic, nuclear and mitochondrial membranes, apoptosis through activation of the caspase cascade, and hyperoxidation of fatty chains. In this manuscript, we reviewed the articles regarding role of iron in hepatic inflammation and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan.
| | - Shingo Tanaka
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan; Department of Infection Control, and Laboratory Medicine, Sapporo Medical University, School of Medicine, Japan
| | - Hiroki Sakamoto
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University, School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| |
Collapse
|
35
|
Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: Mechanistic and clinical aspects. World J Gastroenterol 2019; 25:521-538. [PMID: 30774269 PMCID: PMC6371002 DOI: 10.3748/wjg.v25.i5.521] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterised by excessive deposition of extracellular matrix that interrupts normal liver functionality. It is a pathological stage in several untreated chronic liver diseases such as the iron overload syndrome hereditary haemochromatosis, viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and diabetes. Interestingly, regardless of the aetiology, iron-loading is frequently observed in chronic liver diseases. Excess iron can feed the Fenton reaction to generate unquenchable amounts of free radicals that cause grave cellular and tissue damage and thereby contribute to fibrosis. Moreover, excess iron can induce fibrosis-promoting signals in the parenchymal and non-parenchymal cells, which accelerate disease progression and exacerbate liver pathology. Fibrosis regression is achievable following treatment, but if untreated or unsuccessful, it can progress to the irreversible cirrhotic stage leading to organ failure and hepatocellular carcinoma, where resection or transplantation remain the only curative options. Therefore, understanding the role of iron in liver fibrosis is extremely essential as it can help in formulating iron-related diagnostic, prognostic and treatment strategies. These can be implemented in isolation or in combination with the current approaches to prepone detection, and halt or decelerate fibrosis progression before it reaches the irreparable stage. Thus, this review narrates the role of iron in liver fibrosis. It examines the underlying mechanisms by which excess iron can facilitate fibrotic responses. It describes the role of iron in various clinical pathologies and lastly, highlights the significance and potential of iron-related proteins in the diagnosis and therapeutics of liver fibrosis.
Collapse
Affiliation(s)
- Kosha J Mehta
- School of Population Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, United Kingdom
| | - Sebastien Je Farnaud
- Faculty Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Paul A Sharp
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
36
|
Publisher's Note. J Surg Res 2019. [DOI: 10.1016/j.jss.2018.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Sakurada A, Miyanishi K, Tanaka S, Sato M, Sakamoto H, Kawano Y, Takada K, Nakabeppu Y, Kobune M, Kato J. An intronic single nucleotide polymorphism in the MUTYH gene is associated with increased risk for HCV-induced hepatocellular carcinoma. Free Radic Biol Med 2018; 129:88-96. [PMID: 30218772 DOI: 10.1016/j.freeradbiomed.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The role of base excision repair genes in human hepatocarcinogenesis has not yet been explored. Here, we investigated relationships between variants of these genes and the risk of developing hepatocellular carcinoma (HCC). METHODS Nineteen tagging SNPs in base excision repair genes (including MUTYH, OGG1 and MTH1) were genotyped using iPLEX assays; one significant SNP was found and confirmed in Japanese patients with chronic hepatitis C (CHC) (n = 38 HCC and 55 controls). The effects of modifying the intronic variants were determined by luciferase assays. MUTYH-null mice were used to examine the involvement of oxidative stress and DNA repair enzymes in hepatocarcinogenesis. RESULTS Significant associations were found for a single intron SNP (rs3219487) in the MUTYH gene. The risk of developing HCC in patients with A/A or G/A genotypes was higher than in those with the G/G genotype (OR = 9.27, 95% CI = 2.39 -32.1, P = 0.0005). MUTYH mRNA levels in both peripheral mononuclear cells were significantly lower in G/A or A/A genotyped subjects (P = 0.0157 and 0.0108, respectively). We found that -2000 in the MUTYH promoter region is involved in enhanced expression of MUTYH by insertion of a major allele sequence of rs3219487. Liver tumors were observed in MUTYH-null mice after 12 months´ high iron diet, but no tumors developed when dietary anti-oxidant (N-Acetyl-L-cysteine) was also provided. CONCLUSIONS CHC patients with the rs3219487 adenine allele had a significantly increased risk of developing HCC. MUTYH-null mice with iron-associated oxidative stress were susceptible to development of liver tumors unless prevented by dietary anti-oxidants.
Collapse
MESH Headings
- Aged
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- DNA Glycosylases/genetics
- DNA Repair Enzymes/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genotype
- Hep G2 Cells
- Hepacivirus/pathogenicity
- Hepacivirus/physiology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Humans
- Introns
- Iron/administration & dosage
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphoric Monoester Hydrolases/genetics
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Akira Sakurada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Shingo Tanaka
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Sato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroki Sakamoto
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yutaka Kawano
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Masayoshi Kobune
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
38
|
Sato M, Miyanishi K, Tanaka S, Sakurada A, Sakamoto H, Kawano Y, Takada K, Kobune M, Kato J. Increased Duodenal Iron Absorption through Upregulation of Ferroportin 1 due to the Decrement in Serum Hepcidin in Patients with Chronic Hepatitis C. Can J Gastroenterol Hepatol 2018; 2018:2154361. [PMID: 30186818 PMCID: PMC6112088 DOI: 10.1155/2018/2154361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatic iron accumulation is generally increased in the chronic hepatitis C (CHC) liver; however, the precise mechanism of such accumulation remains unclear. We evaluated iron absorption from the gastrointestinal tract of patients with CHC and control participants. We measured the expression of a panel of molecules associated with duodenal iron absorption and serum hepcidin levels to determine the mechanism of iron accumulation in the CHC liver. We enrolled 24 patients with CHC and 9 patients with chronic gastritis without Helicobacter pylori infection or an iron metabolism disorder as control participants. An oral iron absorption test (OIAT) was administered which involved a dosage of 100 mg of sodium ferrous citrate. Serum level of hepcidin-25 was measured by liquid chromatography-tandem mass spectrometry. Ferroportin 1 (FPN) mRNA was measured by RT-PCR and FPN protein was analyzed by western blot. Samples were obtained from duodenum biopsy tissue from each CHC patient and control participant. Caco-2/TC7 cells were incubated in Costar transwells (0.4 μm pores). The OIAT showed significantly greater iron absorption in CHC patients than control participants. Serum hepcidin-25 in the CHC group was significantly lower than in the control group. Compared with control participants, duodenal FPN mRNA expression in CHC patients was significantly upregulated. The FPN mRNA levels and protein levels increased significantly in Caco-2/TC7 cell monolayers cultured in transwells with hepcidin. Lower serum hepcidin-25 levels might upregulate not only FPN protein expression but also mRNA expression in the duodenum and cause iron accumulation in patients with CHC.
Collapse
Affiliation(s)
- Masanori Sato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Shingo Tanaka
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Akira Sakurada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Hiroki Sakamoto
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Yutaka Kawano
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Masayoshi Kobune
- Department of Medical Hematology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| | - Junji Kato
- Department of Medical Oncology, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo 060-8543, Japan
| |
Collapse
|
39
|
Marmur J, Beshara S, Eggertsen G, Onelöv L, Albiin N, Danielsson O, Hultcrantz R, Stål P. Hepcidin levels correlate to liver iron content, but not steatohepatitis, in non-alcoholic fatty liver disease. BMC Gastroenterol 2018; 18:78. [PMID: 29871592 PMCID: PMC5989417 DOI: 10.1186/s12876-018-0804-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background One-third of patients with non-alcoholic fatty liver disease (NAFLD) develop dysmetabolic iron overload syndrome (DIOS), the pathogenesis of which is unknown. Altered production of the iron-regulatory peptide hepcidin has been reported in NAFLD, but it is unclear if this is related to iron accumulation, lipid status or steatohepatitis. Methods Eighty-four patients with liver disease, 54 of which had iron overload, underwent liver biopsy (n = 66) and/or magnetic resonance imaging (n = 35) for liver iron content determination. Thirty-eight of the patients had NAFLD, 29 had chronic liver disease other than NAFLD, and 17 had untreated genetic hemochromatosis. Serum hepcidin was measured with ELISA in all patients and in 34 controls. Hepcidin antimicrobial peptide (HAMP) mRNA in liver tissue was determined with real-time-quantitative PCR in 36 patients. Results Serum hepcidin was increased similarly in NAFLD with DIOS as in the other chronic liver diseases with iron overload, except for genetic hemochromatosis. HAMP mRNA in liver tissue, and serum hepcidin, both correlated to liver iron content in NAFLD patients (r2 = 0.45, p < 0.05 and r2 = 0.27, p < 0.05 respectively) but not to body mass index, NAFLD activity score or serum lipids. There was a good correlation between HAMP mRNA in liver tissue and serum hepcidin (r2 = 0.39, p < 0.01). Conclusions In NAFLD with or without dysmetabolic iron overload, serum hepcidin and HAMP mRNA in liver correlate to body iron content but not to the degree of steatohepatitis or lipid status. Thus, the dysmetabolic iron overload syndrome seen in NAFLD is not caused by an altered hepcidin synthesis.
Collapse
Affiliation(s)
- Joel Marmur
- Unit of Liver Diseases, Department of Upper GI, C1-77 Huddinge, Karolinska University Hospital, Karolinska Institutet, 141 86, Stockholm, Sweden.,Unit of Gastroenterology and Hepatology, Department of Medicine, Ersta Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Soheir Beshara
- Unit of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Gösta Eggertsen
- Unit of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Liselotte Onelöv
- Unit of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nils Albiin
- Department of Radiology, Ersta Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Olof Danielsson
- Unit of Pathology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Hultcrantz
- Unit of Liver Diseases, Department of Upper GI, C1-77 Huddinge, Karolinska University Hospital, Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Per Stål
- Unit of Liver Diseases, Department of Upper GI, C1-77 Huddinge, Karolinska University Hospital, Karolinska Institutet, 141 86, Stockholm, Sweden.
| |
Collapse
|
40
|
Vela D. Low hepcidin in liver fibrosis and cirrhosis; a tale of progressive disorder and a case for a new biochemical marker. Mol Med 2018; 24:5. [PMID: 30134796 PMCID: PMC6016890 DOI: 10.1186/s10020-018-0008-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a precursor of liver cirrhosis, which is associated with increased mortality. Though liver biopsy remains the gold standard for the diagnosis of fibrosis, noninvasive biochemical methods are cost-effective, practical and are not linked with major risks of complications. In this respect, serum hepcidin, has emerged as a new marker of fibrosis and cirrhosis. In this review the discussion uncovers molecular links between hepcidin disturbance and liver fibrosis/cirrhosis. The discussion also expands on clinical studies that suggest that hepcidin can potentially be used as a biochemical parameter of fibrosis/cirrhosis and target of therapeutic strategies to treat liver diseases. The debatable issues such as the complicated nature of hepcidin disturbance in non-alcoholic liver disease, serum levels of hepcidin in acute hepatitis C virus infection, cause of hepcidin disturbance in autoimmune hepatitis and hepatic insulin resistance are discussed, with potential solutions unveiled in order to be studied by future research.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Martyr's Boulevard n.n, Prishtina, 10000, Kosovo.
| |
Collapse
|
41
|
Collins JF, Flores SR, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1451-1483. [DOI: 10.1016/b978-0-12-809954-4.00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Epidemiology and Etiologic Associations of Non-alcoholic Fatty Liver Disease and Associated HCC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:3-18. [PMID: 29956203 DOI: 10.1007/978-981-10-8684-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Ryan JD, Armitage AE, Cobbold JF, Banerjee R, Borsani O, Dongiovanni P, Neubauer S, Morovat R, Wang LM, Pasricha SR, Fargion S, Collier J, Barnes E, Drakesmith H, Valenti L, Pavlides M. Hepatic iron is the major determinant of serum ferritin in NAFLD patients. Liver Int 2018; 38:164-173. [PMID: 28679028 DOI: 10.1111/liv.13513] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Elevated serum ferritin is common in NAFLD, and is associated with more advanced disease and increased mortality. Hyperferritinaemia in NAFLD is often attributed to inflammation, while in other conditions ferritin closely reflects body iron stores. The aim of this study was to clarify the underlying cause of hyperferritinaemia in NAFLD. METHODS Ferritin levels were examined with markers of iron status, inflammation and liver injury across the clinical spectrum of NAFLD using blood, tissue and magnetic resonance (MR) imaging. A separate larger group of NAFLD patients with hepatic iron staining and quantification were used for validation. RESULTS Serum ferritin correlated closely with the iron regulatory hormone hepcidin, and liver iron levels determined by MR. Furthermore, ferritin levels reflected lower serum adiponectin, a marker of insulin resistance, and liver fat, but not cytokine or CRP levels. Ferritin levels differed according to fibrosis stage, increasing from early to moderate disease, and declining in cirrhosis. A similar pattern was found in the validation cohort of NAFLD patients, where ferritin levels were highest in those with macrophage iron deposition. Multivariate analysis revealed liver iron and hepcidin levels as the major determinants of serum ferritin. CONCLUSIONS While hyperferritinaemia is associated with markers of liver injury and insulin resistance, serum hepcidin and hepatic iron are the strongest predictors of ferritin levels. These findings highlight the role of disordered iron homeostasis in the pathogenesis of NAFLD, suggesting that therapies aimed at correcting iron metabolism may be beneficial.
Collapse
Affiliation(s)
- John D Ryan
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jeremy F Cobbold
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | | | - Oscar Borsani
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Reza Morovat
- Department of Biochemistry, John Radcliffe Hospital, Oxford, UK
| | - Lai Mun Wang
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sant-Rayn Pasricha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Silvia Fargion
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jane Collier
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Michael Pavlides
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.,Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Moreno-Navarrete JM, Rodríguez A, Becerril S, Valentí V, Salvador J, Frühbeck G, Fernández-Real JM. Increased Small Intestine Expression of Non-Heme Iron Transporters in Morbidly Obese Patients With Newly Diagnosed Type 2 Diabetes. Mol Nutr Food Res 2017; 62. [PMID: 29082606 DOI: 10.1002/mnfr.201700301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/04/2017] [Indexed: 01/01/2023]
Abstract
SCOPE To investigate intestinal markers of iron absorption in morbidly obese subjects according to glucose tolerance. METHODS AND RESULTS Gene expression of both non-heme (SLC40A1 (ferroportin), SLC11A2) and heme iron (SLC46A1 (HCP1), HMOX1) transporters is analyzed in 38 small intestine tissue samples [11 with normal glucose tolerance, 14 with glucose intolerance (GI), and 13 with newly diagnosed type 2 diabetes (T2D)]. SLC40A1 (r = 0.43, p = 0.008) and SLC11A2 (r = 0.35, p = 0.03) mRNA levels are positively correlated with ferritin-to-hepcidin ratio and with fasting glucose, being significantly increased in patients with T2D. Only ferroportin is negatively associated with serum hepcidin (r = -0.617, p < 0.0001). In multivariate regression analysis, fasting glucose contributes independently to intestinal SLC40A1 (p = 0.009) and SLC11A2 (p = 0.04) variance after controlling for age, sex, and BMI. When circulating hepcidin is incorporated into the model, fasting glucose contributes significantly and independently to intestinal SLC40A1 (p = 0.02), but not to SLC11A2 (p = 0.07) variance. SLC46A1 and HMOX1 are similar in all groups. CONCLUSION The expression of ferroportin and SLC11A2 is increased in the intestine of patients with T2D in association with iron stores and serum hepcidin levels. Increased intestinal iron absorption is a potential mechanism that could explain the increased body iron stores frequently observed in patients with T2D.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Víctor Valentí
- Department of Surgery, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Javier Salvador
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| |
Collapse
|
45
|
Effects of Dapagliflozin on Body Composition and Liver Tests in Patients with Nonalcoholic Steatohepatitis Associated with Type 2 Diabetes Mellitus: A Prospective, Open-label, Uncontrolled Study. Curr Ther Res Clin Exp 2017; 87:13-19. [PMID: 28912902 PMCID: PMC5587885 DOI: 10.1016/j.curtheres.2017.07.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 02/07/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is an active form of nonalcoholic fatty liver disease. Risk factors for NASH include type 2 diabetes mellitus (T2DM) and obesity. Sodium–glucose cotransporter 2 (SGLT2) inhibitors used to treat T2DM prevent glucose reabsorption in the kidney and increase glucose urinary excretion. Dapagliflozin is a potent, selective SGLT2 inhibitor that reduces hyperglycemia in patients with T2DM and has been demonstrated to reduce some complications associated with NASH in rodent models. Objective To assess the efficacy and safety profile of dapagliflozin for the treatment of NASH-associated with T2DM. Methods In this single-arm, nonrandomized, open-label study, 16 patients with percutaneous liver biopsy-confirmed NASH and T2DM were enrolled to be prescribed dapagliflozin 5 mg/d for 24 weeks. Of these, 11 patients were evaluable. Patients with chronic liver disease other than NASH were excluded. Body composition, laboratory variables related to liver tests and metabolism, and glucose homeostasis were assessed at baseline and periodically during the study. Changes from baseline were evaluated with the Wilcoxon signed-rank test. Results Administration of dapagliflozin for 24 weeks was associated with significant decreases in body mass index (P < 0.01), waist circumference (P < 0.01), and waist-to-hip ratio (P < 0.01). Changes in body composition were driven by reductions in body fat mass (P < 0.01) and percent body fat (P < 0.01), without changes in lean mass or total body water. Liver tests (ie, serum concentrations of aspartate aminotransferase, alanine aminotransferase, ferritin, and type IV collagen 7S) also significantly improved during the study. Insulin concentrations decreased (P < 0.01 by Week 24) in combination with significant reductions in fasting plasma glucose (P < 0.01) and glycated hemoglobin (P < 0.01) levels and increases in adiponectin (P < 0.01) levels from Week 4 onward. Conclusions Dapagliflozin was associated with improvements in body composition, most likely a reduction in visceral fat, which occurred together with improvements in liver tests and metabolic variables in patients with NASH-associated with T2DM. UMIN Clinical Trial Registry identifier: UMIN000023574.
Collapse
|
46
|
Jaruvongvanich V, Riangwiwat T, Sanguankeo A, Upala S. Outcome of phlebotomy for treating nonalcoholic fatty liver disease: A systematic review and meta-analysis. Saudi J Gastroenterol 2016; 22:407-414. [PMID: 27976635 PMCID: PMC5184740 DOI: 10.4103/1319-3767.195551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS No medications have been approved for managing nonalcoholic fatty liver disease (NAFLD). Lifestyle intervention is the mainstay for its treatment. Hyperferritinemia, which appears to be associated with the severity of liver injury and insulin resistance, is frequently observed in patients with NAFLD. PATIENTS AND METHODS We conducted a systematic review and meta-analysis of the outcomes of four interventional trials regarding the effect of phlebotomy in patients with NAFLD versus the outcomes of NAFLD patients who did not undergo phlebotomy. Primary outcome was the pooled mean difference (MD) of the homeostasis model assessment of insulin resistance (HOMA-IR). The secondary outcomes were the changes in liver enzymes and the lipid profile. RESULTS Four interventional studies involving 438 participants were included in the meta-analysis. HOMA-IR was lower in patients who underwent phlebotomy, with an MD of 0.84 [95% confidence interval (CI) 0.01 to 1.67, I2 = 72%]. Phlebotomy also significantly reduced the alanine aminotransferase (MD = 10.05, 95% CI 7.19-12.92, I2 = 34%) and triglyceride (MD = 9.89, 95% CI 4.96-14.83, I2 = 22%) levels and increased the high-density cholesterol level (MD = 3.48, 95% CI 2.03-4.92, I2 = 18%). CONCLUSION Phlebotomy decreased insulin resistance and liver transaminase levels in patients with NAFLD. In addition, it improved their lipid profile.
Collapse
Affiliation(s)
- Veeravich Jaruvongvanich
- Department of Internal Medicine, University of Hawaii, Honolulu, HI, USA,Department of Internal Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tanawan Riangwiwat
- Department of Internal Medicine, University of Hawaii, Honolulu, HI, USA
| | - Anawin Sanguankeo
- Department of Internal Medicine, Bassett Medical Center and Columbia University College of Physicians and Surgeons, Cooperstown, NY, USA,Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sikarin Upala
- Department of Internal Medicine, Bassett Medical Center and Columbia University College of Physicians and Surgeons, Cooperstown, NY, USA,Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Address for correspondence: Dr. Sikarin Upala, Bassett Medical Center, 1 Atwell Road, Cooperstown, NY, USA 13326. E-mail:
| |
Collapse
|
47
|
Rametta R, Dongiovanni P, Pelusi S, Francione P, Iuculano F, Borroni V, Fatta E, Castagna A, Girelli D, Fargion S, Valenti L. Hepcidin resistance in dysmetabolic iron overload. Liver Int 2016; 36:1540-8. [PMID: 26998752 DOI: 10.1111/liv.13124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Dysmetabolic iron overload syndrome (DIOS) is a frequent condition predisposing to metabolic, cardiovascular and hepatic damage, whose pathogenesis remains poorly defined. Aim of this study was to characterize iron metabolism in DIOS. METHODS We evaluated 18 patients with DIOS, compared to 18 with nonalcoholic fatty liver and 23 healthy individuals with normal iron status, and 10 patients with hereditary haemochromatosis by a 24-h oral iron tolerance test with hepcidin measurement and iron metabolism modelling under normal iron stores. RESULTS Dysmetabolic iron overload syndrome patients had higher peak transferrin saturation and area under the-curve of transferrin saturation than subjects with normal iron status, but lower values than haemochromatosis patients (P < 0.05 for all). Conversely, they had higher peak circulating hepcidin levels and area under the curve of hepcidin than the other groups (P < 0.05 for all). This was independent age, sex, haemoglobin, ferritin, and transferrin saturation levels (P = 0.0002). Hepcidin increase in response to the rise in transferrin saturation (hepcidin release index) was not impaired in DIOS patients. Viceversa, the ability of the hepcidin spike to control the rise in transferrin saturation at the beginning of the test (hepcidin resistance index) was impaired in DIOS (P = 0.0002). In DIOS patients, the hepcidin resistance index was correlated with ferritin levels at diagnosis (P = 0.016). CONCLUSIONS Dysmetabolic iron overload syndrome is associated with a subtle impairment in the ability of the iron hormone hepcidin to restrain iron absorption following an iron challenge, suggesting a hepcidin resistance state. Further studies are required to better characterize the molecular mechanism underpinning this new iron metabolism alteration.
Collapse
Affiliation(s)
- Raffaela Rametta
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Serena Pelusi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Paolo Francione
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Federica Iuculano
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Vittorio Borroni
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Erika Fatta
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Castagna
- Policlinico G.B. Rossi, Department of Medicine, Università di Verona, Verona, Italy
| | - Domenico Girelli
- Policlinico G.B. Rossi, Department of Medicine, Università di Verona, Verona, Italy
| | - Silvia Fargion
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy. .,Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| |
Collapse
|
48
|
Britton LJ, Subramaniam VN, Crawford DHG. Iron and non-alcoholic fatty liver disease. World J Gastroenterol 2016; 22:8112-8122. [PMID: 27688653 PMCID: PMC5037080 DOI: 10.3748/wjg.v22.i36.8112] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that promote liver injury in non-alcoholic fatty liver disease (NAFLD) are yet to be thoroughly elucidated. As such, effective treatment strategies are lacking and novel therapeutic targets are required. Iron has been widely implicated in the pathogenesis of NAFLD and represents a potential target for treatment. Relationships between serum ferritin concentration and NAFLD are noted in a majority of studies, although serum ferritin is an imprecise measure of iron loading. Numerous mechanisms for a pathogenic role of hepatic iron in NAFLD have been demonstrated in animal and cell culture models. However, the human data linking hepatic iron to liver injury in NAFLD is less clear, with seemingly conflicting evidence, supporting either an effect of iron in hepatocytes or within reticulo-endothelial cells. Adipose tissue has emerged as a key site at which iron may have a pathogenic role in NAFLD. Evidence for this comes indirectly from studies that have evaluated the role of adipose tissue iron with respect to insulin resistance. Adding further complexity, multiple strands of evidence support an effect of NAFLD itself on iron metabolism. In this review, we summarise the human and basic science data that has evaluated the role of iron in NAFLD pathogenesis.
Collapse
|
49
|
Ruivard M, Laine F, Deugnier Y. Iron absorption in nonalcoholic steatohepatitis and dysmetabolic iron overload syndrome. Hepatology 2016; 63:1737-8. [PMID: 26476299 DOI: 10.1002/hep.28296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Marc Ruivard
- Department of Internal Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Fabrice Laine
- Centre d'Investigation Clinique INSERM 0203, CHU Pontchaillou, Rennes, France
| | - Yves Deugnier
- Centre d'Investigation Clinique INSERM 0203 and U522, CHU Pontchaillou, Rennes, France
| |
Collapse
|
50
|
Miyanishi K, Kobune M, Kato J. Reply. Hepatology 2016; 63:1738-9. [PMID: 26473974 DOI: 10.1002/hep.28290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Koji Miyanishi
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masayoshi Kobune
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Junji Kato
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|