1
|
Dysregulated hepcidin response to dietary iron in male mice with reduced Gnpat expression. Biosci Rep 2020; 40:226001. [PMID: 32766721 PMCID: PMC7441371 DOI: 10.1042/bsr20201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Exome sequencing has identified the glyceronephosphate O-acyltransferase (GNPAT) gene as a genetic modifier of iron overload in hereditary hemochromatosis (HH). Subjects with HFE (Homeostatic Iron Regulator) p.C282Y mutations and the GNPAT p.D519G variant had more iron loading compared with subjects without the GNPAT variant. In response to an oral iron challenge, women with GNPAT polymorphisms loaded more iron as compared with women without polymorphisms, reinforcing a role for GNPAT in iron homeostasis. The aim of the present study was to develop and characterize an animal model of disease to further our understanding of genetic modifiers, and in particular the role of GNPAT in iron homeostasis. We generated an Hfe/Gnpat mouse model reminiscent of the patients previously studied and studied these mice for up to 26 weeks. We also examined the effect of dietary iron loading on mice with reduced Gnpat expression. Gnpat heterozygosity in Hfe knockout mice does not play a role in systemic iron homeostasis; Gnpat+/− mice fed a high-iron diet, however, had lower hepatic hepcidin (HAMP) mRNA expression, whereas they have significantly higher serum iron levels and transferrin saturation compared with wildtype (WT) littermates on a similar diet. These results reinforce an independent role of GNPAT in systemic iron homeostasis, reproducing in an animal model, the observations in women with GNPAT polymorphisms subjected to an iron tolerance test.
Collapse
|
2
|
Secondes ES, Wallace DF, Rishi G, McLaren GD, McLaren CE, Chen WP, Ramm LE, Powell LW, Ramm GA, Barton JC, Subramaniam VN. Increased frequency of GNPAT p.D519G in compound HFE p.C282Y/p.H63D heterozygotes with elevated serum ferritin levels. Blood Cells Mol Dis 2020; 85:102463. [PMID: 32652459 DOI: 10.1016/j.bcmd.2020.102463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Glyceronephosphate O-acyltransferase (GNPAT) p.D519G (rs11558492) was identified as a genetic modifier correlated with more severe iron overload in hemochromatosis through whole-exome sequencing of HFE p.C282Y homozygotes with extreme iron phenotypes. We studied the prevalence of p.D519G in HFE p.C282Y/p.H63D compound heterozygotes, a genotype associated with iron overload in some patients. Cases were Australian participants with elevated serum ferritin (SF) levels ≥300μg/L (males) and ≥200μg/L (females); subjects whose SF levels were below these cut-offs were designated as controls. Samples were genotyped for GNPAT p.D519G. We compared the allele frequency of the present subjects, with/without elevated SF, to p.D519G frequency in public datasets. GNPAT p.D519G was more prevalent in our cohort of p.C282Y/p.H63D compound heterozygotes with elevated SF (37%) than European public datasets: 1000G 21%, gnomAD 20% and ESP 21%. We conclude that GNPAT p.D519G is associated with elevated SF in Australian HFE p.C282Y/p.H63D compound heterozygotes.
Collapse
Affiliation(s)
- Eriza S Secondes
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| | - Daniel F Wallace
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| | - Gautam Rishi
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
| | - Gordon D McLaren
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA; Department of Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA.
| | | | - Wen-Pin Chen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA.
| | - Louise E Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Lawrie W Powell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - James C Barton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA, Southern Iron Disorders Center, Birmingham, AL, USA
| | - V Nathan Subramaniam
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
An P, Wang J, Wang H, Jiang L, Wang J, Min J, Wang F. Gnpat does not play an essential role in systemic iron homeostasis in murine model. J Cell Mol Med 2020; 24:4118-4126. [PMID: 32108988 PMCID: PMC7171407 DOI: 10.1111/jcmm.15068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
The GNPAT variant rs11558492 (p.D519G) was identified as a novel genetic factor that modifies the iron‐overload phenotype in homozygous carriers of the HFE p.C282Y variant. However, the reported effects of the GNPAT p.D519G variant vary among study populations. Here, we investigated the role of GNPAT in iron metabolism using Gnpat‐knockout (Gnpat−/−), Gnpat/Hfe double‐knockout (Gnpat−/−Hfe−/− or DKO) mice and hepatocyte‐specific Gnpat‐knockout mice (Gnpatfl/fl;Alb‐Cre). Our analysis revealed no significant difference between wild‐type (Gnpat+/+) and Gnpat−/− mice, between Hfe−/− and DKO mice, or between Gnpatfl/fl and Gnpatfl/fl;Alb‐Cre with respect to serum iron and tissue iron. In addition, the expression of hepcidin was not affected by deleting Gnpat expression in the presence or absence of Hfe. Feeding Gnpat−/− and DKO mice a high‐iron diet had no effect on tissue iron levels compared with wild‐type and Hfe−/− mice, respectively. Gnpat knockdown in primary hepatocytes from wild‐type or Hfe−/− mice did not alter hepcidin expression, but it repressed BMP6‐induced hepcidin expression. Taken together, these results support the hypothesis that deleting Gnpat expression has no effect on either systemic iron metabolism or the iron‐overload phenotype that develops in Hfe−/− mice, suggesting that GNPAT does not directly mediate iron homeostasis under normal or high‐iron dietary conditions.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Jiaming Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Jiang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Wang
- Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Farrell CP, Overbey JR, Naik H, Nance D, McLaren GD, McLaren CE, Zhou L, Desnick RJ, Parker CJ, Phillips JD. The D519G Polymorphism of Glyceronephosphate O-Acyltransferase Is a Risk Factor for Familial Porphyria Cutanea Tarda. PLoS One 2016; 11:e0163322. [PMID: 27661980 PMCID: PMC5035022 DOI: 10.1371/journal.pone.0163322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/07/2016] [Indexed: 01/08/2023] Open
Abstract
Both familial and sporadic porphyria cutanea tarda (PCT) are iron dependent diseases. Symptoms of PCT resolve when iron stores are depleted by phlebotomy, and a sequence variant of HFE (C282Y, c.843G>A, rs1800562) that enhances iron aborption by reducing hepcidin expression is a risk factor for PCT. Recently, a polymorphic variant (D519G, c.1556A>G, rs11558492) of glyceronephosphate O-acyltransferase (GNPAT) was shown to be enriched in male patients with type I hereditary hemochromatosis (HFE C282Y homozygotes) who presented with a high iron phenotype, suggesting that GNPAT D519G, like HFE C282Y, is a modifier of iron homeostasis that favors iron absorption. To challenge this hypothesis, we investigated the frequency of GNPAT D519G in patients with both familial and sporadic PCT. Patients were screened for GNPAT D519G and allelic variants of HFE (both C282Y and H63D). Nucleotide sequencing of uroporphyrinogen decarboxylase (URO-D) identified mutant alleles. Patients with low erythrocyte URO-D activity or a damaging URO-D variant were classified as familial PCT (fPCT) and those with wild-type URO-D were classified as sporadic PCT (sPCT). GNPAT D519G was significantly enriched in the fPCT patient population (p = 0.0014) but not in the sPCT population (p = 0.4477). Both HFE C282Y and H63D (c.187C>G, rs1799945) were enriched in both PCT patient populations (p<0.0001) but showed no greater association with fPCT than with sPCT. Conclusion: GNPAT D519G is a risk factor for fPCT, but not for sPCT.
Collapse
Affiliation(s)
- Colin P. Farrell
- Department of Medicine, Hematology Division, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jessica R. Overbey
- Population Health Science and Policy, Mt. Sinai School of Medicine, New York City, New York, United States of America
| | - Hetanshi Naik
- Genetics and Genomics Sciences, Mt. Sinai School of Medicine, New York City, New York, United States of America
| | - Danielle Nance
- Department of Medicine, Hematology Division, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Gordon D. McLaren
- Veterans Affairs, Long Beach Healthcare System, Long Beach, California, United States of America
- Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, California, United States of America
| | - Christine E. McLaren
- Epidemiology, University of California Irvine, Irvine, California, United States of America
| | - Luming Zhou
- Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Robert J. Desnick
- Genetics and Genomics Sciences, Mt. Sinai School of Medicine, New York City, New York, United States of America
| | - Charles J. Parker
- Department of Medicine, Hematology Division, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John D. Phillips
- Department of Medicine, Hematology Division, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|