1
|
Su FZ, Bai CX, Zhang WS, Liu M, Li B, Sun MH, He YJ, Zeng YN, Sun YP, Yang BY, Kuang HX, Wang QH. Lipid-lowering effects of bile Arisaema polysaccharides on high-fat diet-induced hyperlipidemia: An integrated analysis of metabolomics, lipidomics and microbiome. Int J Biol Macromol 2025; 311:143932. [PMID: 40348213 DOI: 10.1016/j.ijbiomac.2025.143932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Bile Arisaema, a traditional Chinese medicine, has been previously identified by our team to possess antipyretic properties attributed to its polysaccharide component. Recently, we have confirmed that bile Arisaema played a significantly lipid-lowering effect on hyperlipidemia rats. Building upon this discovery, the present study aimed to investigate the unexplored hypolipidemic potential of its polysaccharide component and elucidate the underlying mechanisms. A soluble polysaccharide fraction devoid of free proteins, named BAPs, was extracted from bile Arisaema using a combination of hot water extraction, alcohol precipitation, and the Sevage method. The structural characteristics of BAPs were preliminarily elucidated through monosaccharide composition analysis (mainly composed of glucose), molecular weight distribution (38.74 kDa and 2.87 kDa), and glycosyl linkage analysis via methylation. The results of animal experiment demonstrated that oral administration of BAPs (400 mg/kg/day) for four weeks significantly improved abnormal serum lipid levels, hepatic function and histopathological injury on high-fat diet-induced hyperlipidemia rats. Mechanistically, the results of high throughput sequencing indicated that BAPs intake markedly altered the hepatic and fecal metabolome and lipidome, while also modulating gut microbiota composition and improving intestinal barrier integrity. Spearman's correlation analysis unveiled closely associations between the altered microbes, lipids, metabolites and serum biochemical indicators. Western blotting and qRT-PCR analyses further confirmed that these metabolic improvements were mediated by the regulation of key genes involved in lipid metabolism. Collectively, this study demonstrated that BAP supplementation effectively improved serum lipid profiles in hyperlipidemia rats by modulating metabolic disorders and restoring gut homeostasis.
Collapse
Affiliation(s)
- Fa-Zhi Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Chen-Xi Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wen-Sen Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Meng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Ming-Hao Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yu-Jia He
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yuan-Ning Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Qiu-Hong Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Accacha S, Barillas-Cerritos J, Srivastava A, Ross F, Drewes W, Gulkarov S, De Leon J, Reiss AB. From Childhood Obesity to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Hyperlipidemia Through Oxidative Stress During Childhood. Metabolites 2025; 15:287. [PMID: 40422865 DOI: 10.3390/metabo15050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is rapidly becoming the most prevalent form of chronic liver disease in both pediatric and adult populations. It encompasses a wide spectrum of liver abnormalities, ranging from simple fat accumulation to severe conditions such as inflammation, fibrosis, cirrhosis, and liver cancer. Major risk factors for MASLD include obesity, insulin resistance, type 2 diabetes, and hypertriglyceridemia. METHODS This narrative review employed a comprehensive search of recent literature to identify the latest studies on the relationship between MAFLD and obesity, the health consequences and the latest treatment options to prevent long-term damage to the liver and other organs. Additionally, the article presents perspectives on diagnostic biomarkers. RESULTS Childhood obesity is linked to a multitude of comorbid conditions and remains a primary risk factor for adult obesity. This abnormal fat accumulation is known to have long-term detrimental effects into adulthood. Scientific evidence unequivocally demonstrates the role of obesity-related conditions, such as insulin resistance, dyslipidemia, and hyperglycemia, in the development and progression of MASLD. Oxidative stress, stemming from mitochondrial dysfunction, is a leading factor in MASLD. This review discusses the interconnections between oxidative stress, obesity, dyslipidemia, and MASLD. CONCLUSIONS Atherogenic dyslipidemia, oxidative stress, inflammation, insulin resistance, endothelial dysfunction, and cytokines collectively contribute to the development of MASLD. Potential treatment targets for MASLD are focused on prevention and the use of drugs to address obesity and elevated blood lipid levels.
Collapse
Affiliation(s)
- Siham Accacha
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Julia Barillas-Cerritos
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Ankita Srivastava
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Frances Ross
- Department of Pediatrics, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Wendy Drewes
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Shelly Gulkarov
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Allison B Reiss
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Song L, Huang Y, Liu L, Chang X, Hu L, Wang G, Xu L, Zhang T, Wang Y, Xiao Y, Yang H, Ran S, Shi Q, Wang T, Shi M, Zhou Y, Guo B. Meteorin-like alleviates hepatic steatosis by regulating hepatic triglyceride secretion and fatty acid oxidation. Cell Rep 2025; 44:115246. [PMID: 39918960 DOI: 10.1016/j.celrep.2025.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Amid a rising prevalence of non-alcoholic fatty liver disease (NAFLD), there is still an unmet need to better treat it. We identified a secreted factor, Meteorin-like (Metrnl), with decreased levels in livers with hepatic steatosis. Notably, recombinant Metrnl ameliorated hepatic steatosis in NAFLD mouse models. Mechanistically, Metrnl exerted dual effects by promoting triglyceride (TG) transportation by the phosphatidylinositol 3-kinase (PI3K)/Akt/Sp1/cytidylyltransferase α (CCTα) axis, thereby increasing the biosynthesis of phosphatidylcholine (PC) to facilitate TG secretion from the liver while facilitating AMP-activated protein kinase (AMPK)-dependent fatty acid oxidation (FAO). Exogenous injection of cytidine diphosphocholine (CDP)-choline, the production of CCTα, to increase PC synthesis, was shown to restore the inhibition of TG secretion in hepatic Metrnl-deficient (LKO-Met) mice. Combining CDP-choline and an AMPK activator was sufficient to rescue hepatic steatosis in LKO-Met mice. Collectively, these findings reveal unexpected roles of Metrnl as a factor in PC biosynthesis, TG secretion, and FAO, suggesting potential therapeutic application for NAFLD.
Collapse
Affiliation(s)
- Lingyu Song
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yali Huang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lu Liu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Xuebing Chang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Laying Hu
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Guifang Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tian Zhang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Yuanyuan Wang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Ying Xiao
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Hong Yang
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Suye Ran
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Qing Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361005, Fujian, China
| | - Mingjun Shi
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Yuxia Zhou
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China.
| | - Bing Guo
- Department of Pathophysiology, and Department of Gastroenterology of the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Gui'an New Area, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases and Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Gui'an New Area, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Gui'an New Area, 561113, Guizhou, China.
| |
Collapse
|
4
|
Hunt EG, Hurst KE, Riesenberg BP, Kennedy AS, Gandy EJ, Andrews AM, Del Mar Alicea Pauneto C, Ball LE, Wallace ED, Gao P, Meier J, Serody JJ, Coleman MF, Thaxton JE. Acetyl-CoA carboxylase obstructs CD8 + T cell lipid utilization in the tumor microenvironment. Cell Metab 2024; 36:969-983.e10. [PMID: 38490211 PMCID: PMC12010431 DOI: 10.1016/j.cmet.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.
Collapse
Affiliation(s)
- Elizabeth G Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Katie E Hurst
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Brian P Riesenberg
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Andrew S Kennedy
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Evelyn J Gandy
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alex M Andrews
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Coral Del Mar Alicea Pauneto
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Emily D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Peng Gao
- Department of Medicine, Metabolomics Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy Meier
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - John J Serody
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jessica E Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
5
|
Hao P, Yang X, Yin W, Wang X, Ling Y, Zhu M, Yu Y, Chen S, Yuan Y, Quan X, Xu Z, Zhang J, Zhao W, Zhang Y, Song C, Xu Q, Qin S, Wu Y, Shu X, Wei K. A study on the treatment effects of Crataegus pinnatifida polysaccharide on non-alcoholic fatty liver in mice by modulating gut microbiota. Front Vet Sci 2024; 11:1383801. [PMID: 38601914 PMCID: PMC11006196 DOI: 10.3389/fvets.2024.1383801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
The objective of this study was to investigate the protective effect of Crataegus pinnatifida polysaccharide (CPP) on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice. The findings demonstrated that CPP improved free fatty acid (FFA)-induced lipid accumulation in HepG2 cells and effectively reduced liver steatosis and epididymal fat weight in NAFLD mice, as well as decreased serum levels of TG, TC, AST, ALT, and LDL-C. Furthermore, CPP exhibited inhibitory effects on the expression of fatty acid synthesis genes FASN and ACC while activating the expression of fatty acid oxidation genes CPT1A and PPARα. Additionally, CPP reversed disturbances in intestinal microbiota composition caused by HFD consumption. CPP decreased the firmicutes/Bacteroidetes ratio, increased Akkermansia abundance, and elevated levels of total short-chain fatty acid (SCFA) content specifically butyric acid and acetic acid. Our results concluded that CPP may intervene in the development of NAFLD by regulating of intes-tinal microbiota imbalance and SCFAs production. Our study highlights that CPP has a potential to modulate lipid-related pathways via alterations to gut microbiome composition thereby ex-erting inhibitory effects on obesity and NAFLD development.
Collapse
Affiliation(s)
- Ping Hao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaonan Yang
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Wen Yin
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Ling
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengyao Zhu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shouhai Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuan Yuan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Quan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhiheng Xu
- College of Medicine (Institute of Translational Medicine), Yangzhou University, Yangzhou, China
| | - Jiahui Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjia Zhao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ying Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Chunlian Song
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qing Xu
- Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Shuangshuang Qin
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Wu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xianghua Shu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Kunhua Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production and Development of Cantonese Medicinal Materials/Guangdong Engineering Research Center of Good Agricultural Practice and Comprehensive Development for Cantonese Medicinal Materials, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
6
|
Dong J, Li M, Peng R, Zhang Y, Qiao Z, Sun N. ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis. J Transl Med 2024; 22:196. [PMID: 38395901 PMCID: PMC10885411 DOI: 10.1186/s12967-024-04942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose global prevalence is rapidly increasing. Acetyl CoA carboxylases 1 (ACACA) is the key enzyme that controls the rate of fatty acid synthesis. Hence, it is crucial to investigate the function of ACACA in regulating lipid metabolism during the progress of NAFLD. METHODS Firstly, a fatty liver mouse model was established by high-fat diet at 2nd, 12th, and 20th week, respectively. Then, transcriptome analysis was performed on liver samples to investigate the underlying mechanisms and identify the target gene of the occurrence and development of NAFLD. Afterwards, lipid accumulation cell model was induced by palmitic acid and oleic acid (PA ∶ OA molar ratio = 1∶2). Next, we silenced the target gene ACACA using small interfering RNAs (siRNAs) or the CMS-121 inhibitor. Subsequently, experiments were performed comprehensively the effects of inhibiting ACACA on mitochondrial function and lipid metabolism, as well as on AMPK- PPARα- CPT1A pathway. RESULTS This data indicated that the pathways significantly affected by high-fat diet include lipid metabolism and mitochondrial function. Then, we focus on the target gene ACACA. In addition, the in vitro results suggested that inhibiting of ACACA in vitro reduces intracellular lipid accumulation, specifically the content of TG and TC. Furthermore, ACACA ameliorated mitochondrial dysfunction and alleviate oxidative stress, including MMP complete, ATP and ROS production, as well as the expression of mitochondria respiratory chain complex (MRC) and AMPK proteins. Meanwhile, ACACA inhibition enhances lipid metabolism through activation of PPARα/CPT1A, leading to a decrease in intracellular lipid accumulation. CONCLUSION Targeting ACACA can reduce lipid accumulation by mediating the AMPK- PPARα- CPT1A pathway, which regulates lipid metabolism and alleviates mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jian Dong
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Muzi Li
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Runsheng Peng
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yuchuan Zhang
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zilin Qiao
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, China
| | - Na Sun
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
7
|
Zheng C, Nie H, Pan M, Fan W, Pi D, Liang Z, Liu D, Wang F, Yang Q, Zhang Y. Chaihu Shugan powder influences nonalcoholic fatty liver disease in rats in remodeling microRNAome and decreasing fatty acid synthesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116967. [PMID: 37506783 DOI: 10.1016/j.jep.2023.116967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu Shugan powder (CSP) plays an important role in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD) through a variety of biological mechanisms. However, whether the mechanism involves microRNA (miRNA) regulation remains unknown. AIM OF THE STUDY To investigate the effects of CSP on the miRNA expression profile of rats with NAFLD induced by high-fat diet (HFD), and to explore the mechanism of CSP in the treatment of NAFLD. METHODS NAFLD rat models were established by an 8-week HFD. The therapeutic effects of CSP on NAFLD were evaluated by physiological, biochemical and pathological analysis and hepatic surface microcirculation perfusion test. MicroRNA sequencing was used to study the effect of CSP on the miRNA expression profile of NAFLD rats, and the target genes of differentially expressed (DE) miRNAs were predicted for further function enrichment analysis. Next, targets of CSP and NAFLD were collected by a network pharmacological approach, and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed for the common target genes of CSP, NAFLD and DE miRNAs, and the expression levels of key genes and proteins were verified by quantitative Real-time PCR and Western blot. Finally, a network among formula-herb-compound-miRNA-target-biological processes-disease was established to explained the complex regulation mechanism of CSP on NAFLD. RESULTS The results showed that CSP significantly improved liver lipid accumulation, serum lipid and transaminase levels and liver surface microcirculation disturbance in HFD-induced NAFLD rats. The intervention of CSP reversed the high expression of 15 miRNAs in liver tissues induced by HFD, including miR-34a-5p, miR-146a-5p, miR-20b-5p and miR-142-3p. The results of pathway and functional enrichment analysis showed that, CSP might play an anti-NAFLD role via regulating DE miRNAs related to fatty acid metabolic process. Combined with the network pharmacological analysis, it was found that the DE miRNAs might affected the fatty acid biosynthesis pathway in the treatment of NAFLD by CSP. Molecular biology experiments have conformed the decreased the gene and protein levels of acetyl-CoA carboxylase alpha (ACACA), fatty acid synthase (FASN) and other fatty acid biosynthesis related enzymes on NAFLD rats after intervention of CSP. CONCLUSIONS CSP can significantly reduce hepatic lipid accumulation of NAFLD rat model induced by HFD, and its mechanism may be through the action of 15 miRNAs such as miR-34a-5p, miR-146a-5p, miR-20b-5p and miR-142-3p. Reduce the gene and protein expression levels of ACACA, FASN and other fatty acid biosynthesis related enzymes, thus reducing fatty acid biosynthesis. Based on an epigenetic perspective, this study explains the key anti-NAFLD mechanism of CSP via combination of microRNA sequencing and network pharmacological analysis, providing a new reference for the modernization of traditional Chinese medicine.
Collapse
Affiliation(s)
- Chuiyang Zheng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Huan Nie
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Maoxing Pan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Wen Fan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dajin Pi
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Zheng Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dongdong Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Fengzhen Wang
- Accreditation Center of TCM Physician State Administration of Traditional Chinese Medicine, Beijing, China.
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Dandan M, Han J, Mann S, Kim R, Li K, Mohammed H, Chuang JC, Zhu K, Billin AN, Huss RS, Chung C, Myers RP, Hellerstein M. Acetyl-CoA carboxylase inhibitor increases LDL-apoB production rate in NASH with cirrhosis: prevention by fenofibrate. J Lipid Res 2023; 64:100339. [PMID: 36737040 PMCID: PMC10017426 DOI: 10.1016/j.jlr.2023.100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Treatment with acetyl-CoA carboxylase inhibitors (ACCi) in nonalcoholic steatohepatitis (NASH) may increase plasma triglycerides (TGs), with variable changes in apoB concentrations. ACC is rate limiting in de novo lipogenesis and regulates fatty acid oxidation, making it an attractive therapeutic target in NASH. Our objectives were to determine the effects of the ACCi, firsocostat, on production rates of plasma LDL-apoB in NASH and the effects of combined therapy with fenofibrate. Metabolic labeling with heavy water and tandem mass spectrometric analysis of LDL-apoB enrichments was performed in 16 NASH patients treated with firsocostat for 12 weeks and in 29 NASH subjects treated with firsocostat and fenofibrate for 12 weeks. In NASH on firsocostat, plasma TG increased significantly by 17% from baseline to week 12 (P = 0.0056). Significant increases were also observed in LDL-apoB fractional replacement rate (baseline to week 12: 31 ± 20.2 to 46 ± 22.6%/day, P = 0.03) and absolute synthesis rate (ASR) (30.4-45.2 mg/dl/day, P = 0.016) but not plasma apoB concentrations. The effect of firsocostat on LDL-apoB ASR was restricted to patients with cirrhosis (21.0 ± 9.6 at baseline and 44.2 ± 17 mg/dl/day at week 12, P = 0.002, N = 8); noncirrhotic patients did not change (39.8 ± 20.8 and 46.3 ± 14.8 mg/dl/day, respectively, P = 0.51, N = 8). Combination treatment with fenofibrate and firsocostat prevented increases in plasma TG, LDL-apoB fractional replacement rate, and ASR. In summary, in NASH with cirrhosis, ACCi treatment increases LDL-apoB100 production rate and this effect can be prevented by concurrent fenofibrate therapy.
Collapse
Affiliation(s)
- Mohamad Dandan
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Julia Han
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Sabrina Mann
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Rachael Kim
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kelvin Li
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA
| | | | - Kaiyi Zhu
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
Ratziu V, Charlton M. Rational combination therapy for NASH: Insights from clinical trials and error. J Hepatol 2023; 78:1073-1079. [PMID: 36603662 DOI: 10.1016/j.jhep.2022.12.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
So far without an approved therapy, non-alcoholic steatohepatitis (NASH) remains at the beginning of its therapeutic cycle, whereby many pharmacological agents are initially developed as monotherapies. Given the complex pathogenesis of NASH, the prevailing opinion is that combination therapy will be key to its treatment and that therapeutic efforts should be aimed at developing combinations rather than monotherapies. However, the development of combination therapies is associated with multiple challenges, which we attempt to describe here, and which extend beyond the perceived biological rationale of combining two different mechanisms of action. Important hurdles include predicting the added benefit of a specific combination regimen over monotherapies, given the limited data provided by early phase trials. Regulatory requirements for approving a combination span from preclinical models, through initial demonstration of the efficacy of the combination, to complex late-stage therapeutic trials. Development pathways for combination therapies are, in this paradigm, highly demanding in terms of patient and sponsor resources. In light of recent, negative, late-stage trials of monotherapies, well-designed combination development programmes could be essential to avoid additional failures that may hold back therapeutic research and access to treatment for patients. Enthusiasm for combination therapies should be maintained but realistically balanced against the complexity of demonstrating their therapeutic value.
Collapse
Affiliation(s)
- Vlad Ratziu
- Sorbonne Université, France; Institute for Cardiometabolism and Nutrition (ICAN), France; Hospital Pitié-Salpêtrière, Paris, France.
| | - Michael Charlton
- Center for Liver Diseases, USA; Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Xu L, Yang H, Xu H, Yang R, Fen L, Jiang D, Xu L, Xing Y. Efficacy and safety of acetyl-CoA carboxylase (ACC) inhibitors in the treatment of nonalcoholic steatohepatitis (NASH): A protocol for systematic review. Medicine (Baltimore) 2022; 101:e32357. [PMID: 36550852 PMCID: PMC9771159 DOI: 10.1097/md.0000000000032357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The pathological mechanism of nonalcoholic steatohepatitis (NASH) is closely related to abnormal lipid regulation in hepatocytes. Patients with NASH generally have a significant increase in de novo lipogenesis, which acetyl-CoA carboxylase (ACC) catalyzes the first committed step. However, the treatment with ACC inhibitors remains controversial. Thus, our study will systematically evaluate the efficacy and safety of ACC inhibitors for the treatment of NASH. METHODS We plan to search PubMed, Cochrane Library, Web of Science, EMBASE, Google Scholar, ClinicalTrials.gov, China Science and Technology Journal Database, Chinese Biomedical Literature Database, Wan-fang Database and China National Knowledge Infrastructure to obtain literatures from January 2015 to January 2030 under the inclusion and exclusion criteria, and include randomized controlled trials containing intervention of ACC inhibitors for NASH. The proportion of patients with reduction in ballooning, inflammation and fibrosis will be accepted as the main outcome. RoB 2 will be used for the risk of bias, as well as Egger's test and funnel plot for reporting bias. We will adopt Review Manager 5.4.1 for data synthesis, subgroup analysis, meta-regression analysis and sensitivity analysis, and conduct trial sequential analysis and quality of evidence evaluation using trial sequential analysis 0.9.5.10 Beta software and GRADE Profiler 3.6.1 software respectively. RESULTS This systematic review will assess the proportion of patients with reduction of ballooning, inflammation and fibrosis, changes in hepatic steatosis, levels of liver enzymes and liver injury markers, metabolic parameters, safety and tolerability to measure the clinical benefits of ACC inhibitors for NASH. CONCLUSION The conclusion of this systematic review will achieve convincing evidence to evaluate the efficacy and safety of ACC inhibitors for NASH.
Collapse
Affiliation(s)
- Liubin Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongling Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Rong Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lian Fen
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dansheng Jiang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linyi Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Anand SK, Caputo M, Xia Y, Andersson E, Cansby E, Kumari S, Henricsson M, Porosk R, Keuenhof KS, Höög JL, Nair S, Marschall HU, Blüher M, Mahlapuu M. Inhibition of MAP4K4 Signaling Initiaties Metabolic Reprogramming to Protect Hepatocytes from Lipotoxic Damage. J Lipid Res 2022; 63:100238. [PMID: 35679904 PMCID: PMC9293639 DOI: 10.1016/j.jlr.2022.100238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.
Collapse
Affiliation(s)
- Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katharina Susanne Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Louise Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, and Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
12
|
Sadeghi F, Amanat S, Bakhtiari M, Asadimehr H, Okhovat MA, Hosseinzadeh M, Mazloomi SM, Gholamalizadeh M, Doaei S. The effects of high fructose fruits and honey on the serum level of metabolic factors and nonalcoholic fatty liver disease. J Diabetes Metab Disord 2021; 20:1647-1654. [PMID: 34900816 DOI: 10.1007/s40200-021-00916-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/09/2021] [Indexed: 12/31/2022]
Abstract
Introduction The effect of the natural sources of fructose such as high fructose fruits and honey on the risk of fatty liver is still challenging. This study aimed to compare the effect of fructose, high fructose fruits, and honey on the metabolic factors and non-alcoholic fatty liver disease (NAFLD). Methods Forty-four rats were divided into four groups including normal diet group, high fructose group (HF), high fructose fruits group (HFF), and honey group (HO). After 120 days of intervention, the levels of insulin resistance, hepatic enzyme, and lipid profile were measured. Also, the expression levels of the acetyl-coA carboxylase (ACC), sterol regulatory element-binding protein 1c (SREBP-1c), Interleukin 6 (IL-6), and transforming growth factor-beta (TGF-β) genes were assessed. In addition, a histopathologic assessment was performed on liver tissues. Results Insulin resistance (IR) increased significantly in the HF, HFF, and HO groups (All P < 0.05). The levels of liver enzymes was significantly increased only in the group receiving the HF regimen (P < 0.01). A significant decrease in total cholesterol and HDL-C (high density lipoprotein cholesterol) levels was found in HO group compared to the control group (P < 0.05). The expression levels of ACC and SREBP-1c genes in HF, HFF, and HO groups were significantly higher than the control group (All P < 0.05). The HF group had a greater increase in the level of gene expression of IL-6 and TGF-β (All P < 0.05). Histopathological assessment did not find any changes in fatty liver formation and inflammatory damage. Conclusion Consumption of fructose-rich honey and fruits improved the status of inflammatory markers and liver enzymes compared with the industrial fructose-rich products.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Discipline of Physiotherapy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sasan Amanat
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Mohammad Bakhtiari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Ali Okhovat
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Hosseinzadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Mazloomi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Reproductive Health Research Center, Department of Obstetrics & Gynecology, Al-Zahra Hospital, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
13
|
Hu Y, He W, Huang Y, Xiang H, Guo J, Che Y, Cheng X, Hu F, Hu M, Ma T, Yu J, Tian H, Tian S, Ji YX, Zhang P, She ZG, Zhang XJ, Huang Z, Yang J, Li H. Fatty Acid Synthase-Suppressor Screening Identifies Sorting Nexin 8 as a Therapeutic Target for NAFLD. Hepatology 2021; 74:2508-2525. [PMID: 34231239 DOI: 10.1002/hep.32045] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is the most prevalent chronic liver disease without any Food and Drug Administration-approved pharmacological intervention in clinic. Fatty acid synthase (FASN) is one of the most attractive targets for NAFLD treatment because of its robust rate-limiting capacity to control hepatic de novo lipogenesis. However, the regulatory mechanisms of FASN in NAFLD and potential therapeutic strategies targeting FASN remain largely unknown. METHODS AND RESULTS Through a systematic interactomics analysis of FASN-complex proteins, we screened and identified sorting nexin 8 (SNX8) as a binding partner of FASN. SNX8 directly bound to FASN and promoted FASN ubiquitination and subsequent proteasomal degradation. We further demonstrated that SNX8 mediated FASN protein degradation by recruiting the E3 ligase tripartite motif containing 28 (TRIM28) and enhancing the TRIM28-FASN interaction. Notably, Snx8 interference in hepatocytes significantly deteriorated lipid accumulation in vitro, whereas SNX8 overexpression markedly blocked hepatocyte lipid deposition. Furthermore, the aggravating effect of Snx8 deletion on NAFLD was validated in vivo as hepatic steatosis and lipogenic pathways in the liver were significantly exacerbated in Snx8-knockout mice compared to wild-type controls. Consistently, hepatocyte-specific overexpression of Snx8 in vivo markedly suppressed high-fat, high-cholesterol diet (HFHC)-induced hepatic steatosis. Notably, the protective effect of SNX8 against NAFLD was largely dependent on FASN suppression. CONCLUSIONS These data indicate that SNX8 is a key suppressor of NAFLD that promotes FASN proteasomal degradation. Targeting the SNX8-FASN axis is a promising strategy for NAFLD prevention and treatment.
Collapse
Affiliation(s)
- Yufeng Hu
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Wenzhi He
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yongping Huang
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Hui Xiang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Guo
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yan Che
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Cheng
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengjiao Hu
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Manli Hu
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Tengfei Ma
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Yu
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Han Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Juan Yang
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliang Li
- College of Life Sciences, Medical Science Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
15
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|
16
|
Zhang X, Zhang Y, Gao W, Guo Z, Wang K, Liu S, Duan Z, Chen Y. Naringin improves lipid metabolism in a tissue-engineered liver model of NAFLD and the underlying mechanisms. Life Sci 2021; 277:119487. [PMID: 33862107 DOI: 10.1016/j.lfs.2021.119487] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is a lipid metabolism disorder. Naringin (a main active ingredient in Ganshuang granules) is a flavanone that has been demonstrated to exert hepatoprotective and antifibrotic effects. The present study aimed to use a novel tissue-engineered fatty liver model to assess the effects and mechanisms of naringin on NAFLD. MAIN METHODS Intracellular triglyceride (TG) was examined by oil red O staining and commercial kits. The proteins associated with lipid metabolism were measured by western blotting and/or qPCR. Very low-density lipoprotein (VLDL) was measured by ELISA. A CCK8 assay was used to assess the cytotoxicity of naringin. Molecular docking was used to predict the interactions and binding patterns between naringin and target proteins. KEY FINDINGS Naringin significantly reduced intracellular TG accumulation by 52.7% in tissue-engineered fatty (TEF) livers, and also the level of pyruvate dehydrogenase kinase 4. Naringin downregulated CD36 and proliferator activated-receptor γ expression, reducing the uptake of FFAs; naringin also downregulated de novo liposynthetases by reducing acetyl CoA carboxylase, fatty acid synthetase etc. in TEF livers. Moreover, naringin increased the expression of proliferator activated-receptor α (PPAR-α) and carnitine palmitoyltransferase 1 to improve the oxidation of fatty acids. The levels of VLDL secreted from TEF livers were reduced by 24.7% after naringin treatment. Molecular docking analyses determined the bioactivity of naringin through its specific binding to CD36 and PPAR-α. SIGNIFICANCE Naringin improved lipid metabolism disorders in TEF livers by reducing fatty acid uptake and de novo lipogenesis and increasing fatty acid oxidation. CD36 and PPAR-α might be specific targets of naringin.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Difficult & Complicated Liver Diseases and Artificial Liver Center & Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yizhi Zhang
- Difficult & Complicated Liver Diseases and Artificial Liver Center & Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Wen Gao
- Difficult & Complicated Liver Diseases and Artificial Liver Center & Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Zhihao Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Liu
- Difficult & Complicated Liver Diseases and Artificial Liver Center & Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center & Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| | - Yu Chen
- Difficult & Complicated Liver Diseases and Artificial Liver Center & Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing YouAn Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Luo M, Fan R, Wang X, Lu J, Li P, Chu W, Hu Y, Chen X. Gualou Xiebai Banxia decoction ameliorates Poloxamer 407-induced hyperlipidemia. Biosci Rep 2021; 41:BSR20204216. [PMID: 34036306 PMCID: PMC8204229 DOI: 10.1042/bsr20204216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gualou Xiebai Banxia (GLXBBX) decoction is a well-known traditional Chinese herbal formula that was first discussed in the Synopsis of the Golden Chamber by Zhang Zhongjing in the Eastern Han Dynasty. In traditional Chinese medicine, GLXBBX is commonly prescribed to treat cardiovascular diseases, such as coronary heart disease and atherosclerosis. OBJECTIVE The present study aimed to examine GLXBBX's preventative capacity and elucidate the potential molecular mechanism of Poloxamer 407 (P407)-induced hyperlipidemia in rats. MATERIALS AND METHODS Both the control and model groups received pure water, and the test group also received a GLXBBX decoction. For each administration, 3 ml of the solution was administered orally. To establish hyperlipidemia, a solution mixed with 0.25 g/kg P407 dissolved in 0.9% normal saline was injected slowly into the abdominal cavity. At the end of the study, the rats' plasma lipid levels were calculated using an automatic biochemical analyzer to evaluate the preventative capability of the GLXBBX decoction, and the serum and liver of the rats were collected. RESULTS The GLXBBX decoction significantly improved P407-induced hyperlipidemia, including increased plasma triglycerides (TGs), aspartate aminotransferase (AST) elevation, and lipid accumulation. Moreover, GLXBBX decoction treatment increased lipoprotein lipase (LPL) activity and mRNA expression of LPL. Furthermore, GLXBBX significantly suppressed the mRNA expression of stearoyl-CoA desaturase (SCD1). CONCLUSION GLXBBX significantly improved P407-induced hyperlipidemia, which may have been related to enhanced LPL activity, increased LPL mRNA expression, and decreased mRNA expression of SCD1.
Collapse
Affiliation(s)
- Mingzhu Luo
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
- Department of Operational Medicinal Research, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Rong Fan
- Department of Operational Medicinal Research, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
- Central Laboratory, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Xiaoming Wang
- Department of Operational Medicinal Research, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Junyu Lu
- Department of Operational Medicinal Research, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ping Li
- Department of Operational Medicinal Research, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
- Department of Pharmacology Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wenbin Chu
- Department of Operational Medicinal Research, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yonghe Hu
- Department of Traditional Chinese Medicine, The General Hospital of Western Theater Command, Chengdu 611137, Sichuan, China
| | - Xuewei Chen
- Department of Operational Medicinal Research, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
18
|
Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Waterhouse RM, Vlachou D, Christophides GK. Anopheles coluzzii stearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding. PLoS Pathog 2021; 17:e1009486. [PMID: 34015060 PMCID: PMC8171932 DOI: 10.1371/journal.ppat.1009486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 06/02/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases. Female mosquitoes can become infected with malaria parasites upon ingestion of blood from an infected person and can transmit the disease when they bite another person some days later. The bloodmeal is rich in proteins which female mosquitoes use to develop their eggs after converting them first to saturated and then to unsaturated fatty acids inside their gut cells. Here, we present the characterization of the enzyme that mosquitoes use to convert saturated to unsaturated fatty acids and show that when this enzyme is eliminated or inhibited mosquitoes cannot produce eggs and die soon after they feed on blood. The mosquito death appears to be primarily associated with the collapse of their gut epithelial barrier due to the loss of cell membrane integrity, leading to their inner body cavity being filled with the ingested blood. These mosquitoes also suffer from an acute and detrimental auto-inflammatory condition due to mounting of a potent immune response in the absence of any infection. We conclude that this enzyme and the mechanism of converting blood-derived proteins to unsaturated fatty acids as a whole can be a good target of interventions aiming at limiting the mosquito abundance and blocking malaria transmission.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Health Science Research Centre, University of Roehampton, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
19
|
Xu M, Ge C, Zhu L, Qin Y, Du C, Lou D, Li Q, Hu L, Sun Y, Dai X, Xiong M, Long T, Zhan J, Kuang Q, Li H, Yang Q, Huang P, Teng X, Feng J, Wu Y, Dong W, Wang B, Tan J. iRhom2 Promotes Hepatic Steatosis by Activating MAP3K7-Dependent Pathway. Hepatology 2021; 73:1346-1364. [PMID: 32592194 DOI: 10.1002/hep.31436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) has been widely recognized as a precursor to metabolic complications. Elevated inflammation levels are predictive of NAFLD-associated metabolic disorder. Inactive rhomboid-like protein 2 (iRhom2) is regarded as a key regulator in inflammation. However, the precise mechanisms by which iRhom2-regulated inflammation promotes NAFLD progression remain to be elucidated. APPROACH AND RESULTS Here, we report that insulin resistance, hepatic steatosis, and specific macrophage inflammatory activation are significantly alleviated in iRhom2-deficient (knockout [KO]) mice, but aggravated in iRhom2 overexpressing mice. We further show that, mechanistically, in response to a high-fat diet (HFD), iRhom2 KO mice and mice with iRhom2 deficiency in myeloid cells only showed less severe hepatic steatosis and insulin resistance than controls. Inversely, transplantation of bone marrow cells from healthy mice to iRhom2 KO mice expedited the severity of insulin resistance and hepatic dyslipidemia. Of note, in response to HFD, hepatic iRhom2 binds to mitogen-activated protein kinase kinase kinase 7 (MAP3K7) to facilitate MAP3K7 phosphorylation and nuclear factor kappa B cascade activation, thereby promoting the activation of c-Jun N-terminal kinase/insulin receptor substrate 1 signaling, but disturbing AKT/glycogen synthase kinase 3β-associated insulin signaling. The iRhom2/MAP3K7 axis is essential for iRhom2-regulated liver steatosis. CONCLUSIONS iRhom2 may represent a therapeutic target for the treatment of HFD-induced hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chengjiang Du
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Yan Sun
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Mingxin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Tingting Long
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Jianxia Zhan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Huanhuan Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Qiufeng Yang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Ping Huang
- Department Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuepeng Teng
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| | - Wei Dong
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
20
|
Syed-Abdul MM, Parks EJ, Gaballah AH, Bingham K, Hammoud GM, Kemble G, Buckley D, McCulloch W, Manrique-Acevedo C. Fatty Acid Synthase Inhibitor TVB-2640 Reduces Hepatic de Novo Lipogenesis in Males With Metabolic Abnormalities. Hepatology 2020; 72:103-118. [PMID: 31630414 DOI: 10.1002/hep.31000] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Elevated hepatic de novo lipogenesis (DNL) is a key distinguishing characteristic of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis. In rodent models of NAFLD, treatment with a surrogate of TVB-2640, a pharmacological fatty acid synthase inhibitor, has been shown to reduce hepatic fat and other biomarkers of DNL. The purpose of this phase I clinical study was to test the effect of the TVB-2640 in obese men with certain metabolic abnormalities that put them at risk for NAFLD. APPROACH AND RESULTS Twelve subjects (mean ± SEM, 42 ± 2 years, body mass index 37.4 ± 1.2 kg/m2 , glucose 103 ± 2 mg/dL, triacylglycerols 196 ± 27 mg/dL, and elevated liver enzymes) underwent 10 days of treatment with TVB-2640 at doses ranging from 50-150 mg/day. Food intake was controlled throughout the study. Hepatic DNL was measured before and after an oral fructose/glucose bolus using isotopic labeling with 1-13 C1 -acetate intravenous infusion, followed by measurement of labeled very low-density lipoprotein palmitate via gas chromatography mass spectometry. Substrate oxidation was measured by indirect calorimetry. Across the range of doses, fasting DNL was reduced by up to 90% (P = 0.003). Increasing plasma concentrations of TVB-2640 were associated with progressive reductions in the percent of fructose-stimulated peak fractional DNL (R2 = -0.749, P = 0.0003) and absolute DNL area under the curve 6 hours following fructose/glucose bolus (R2 = -0.554, P = 0.005). For all subjects combined, alanine aminotransferase was reduced by 15.8 ± 8.4% (P = 0.05). Substrate oxidation was unchanged, and safety monitoring revealed that the drug was well tolerated, without an increase in plasma triglycerides. Alopecia occurred in 2 subjects (reversed after stopping the drug), but otherwise no changes were observed in fasting glucose, insulin, ketones, and renal function. CONCLUSION These data support the therapeutic potential of a fatty acid synthase inhibitor, TVB-2640 in particular, in patients with NAFLD and nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Majid M Syed-Abdul
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, MO
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, MO.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO
| | - Ayman H Gaballah
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO
| | - Kimberlee Bingham
- Department of Nutrition and Exercise Physiology, University of Missouri School of Medicine, Columbia, MO
| | - Ghassan M Hammoud
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, Columbia, MO
| | - George Kemble
- Sagimet Biosciences (formerly 3-V Biosciences), Menlo Park, CA
| | - Douglas Buckley
- Sagimet Biosciences (formerly 3-V Biosciences), Menlo Park, CA
| | | | - Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
21
|
Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Recent development in acetyl-CoA carboxylase inhibitors and their potential as novel drugs. Future Med Chem 2020; 12:533-561. [PMID: 32048880 DOI: 10.4155/fmc-2019-0312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acetyl-CoA carboxylase (ACC), a critical enzyme in the regulation of fatty acid synthesis and metabolism, has emerged as an attractive target for a plethora of emerging diseases, such as diabetes mellitus, nonalcoholic fatty liver disease, cancer, bacterial infections and so on. With decades of efforts in medicinal chemistry, significant progress has been made toward the design and discovery of a considerable number of inhibitors of this enzyme. In this review, we not only clarify the role of ACC in emerging diseases, but also summarize recent developments of potent ACC inhibitors and discuss their molecular mechanisms of action and potentials as novel drugs as well as future perspectives toward the design and discovery of novel ACC inhibitors.
Collapse
|
23
|
Romero FA, Jones CT, Xu Y, Fenaux M, Halcomb RL. The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. J Med Chem 2020; 63:5031-5073. [PMID: 31930920 DOI: 10.1021/acs.jmedchem.9b01701] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by liver steatosis, inflammation, and hepatocellular damage. NASH is a serious condition that can progress to cirrhosis, liver failure, and hepatocellular carcinoma. The association of NASH with obesity, type 2 diabetes mellitus, and dyslipidemia has led to an emerging picture of NASH as the liver manifestation of metabolic syndrome. Although diet and exercise can dramatically improve NASH outcomes, significant lifestyle changes can be challenging to sustain. Pharmaceutical therapies could be an important addition to care, but currently none are approved for NASH. Here, we review the most promising targets for NASH treatment, along with the most advanced therapeutics in development. These include targets involved in metabolism (e.g., sugar, lipid, and cholesterol metabolism), inflammation, and fibrosis. Ultimately, combination therapies addressing multiple aspects of NASH pathogenesis are expected to provide benefit for patients.
Collapse
Affiliation(s)
- F Anthony Romero
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Christopher T Jones
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Yingzi Xu
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Martijn Fenaux
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| | - Randall L Halcomb
- Terns Pharmaceuticals, 1065 E. Hillsdale Blvd., Suite 100, Foster City, California 94404, United States
| |
Collapse
|
24
|
Cansby E, Kulkarni NM, Magnusson E, Kurhe Y, Amrutkar M, Nerstedt A, Ståhlman M, Sihlbom C, Marschall HU, Borén J, Blüher M, Mahlapuu M. Protein kinase MST3 modulates lipid homeostasis in hepatocytes and correlates with nonalcoholic steatohepatitis in humans. FASEB J 2019; 33:9974-9989. [PMID: 31173506 DOI: 10.1096/fj.201900356rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ectopic lipid storage in the liver is considered the main risk factor for nonalcoholic steatohepatitis (NASH). Understanding the molecular networks controlling hepatocellular lipid deposition is therefore essential for developing new strategies to effectively prevent and treat this complex disease. Here, we describe a new regulator of lipid partitioning in human hepatocytes: mammalian sterile 20-like (MST) 3. We found that MST3 protein coats lipid droplets in mouse and human liver cells. Knockdown of MST3 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion while inhibiting fatty acid influx and lipid synthesis. We also observed that lipogenic gene expression and acetyl-coenzyme A carboxylase protein abundance were reduced in MST3-deficient hepatocytes, providing insight into the molecular mechanisms underlying the decreased lipid storage. Furthermore, MST3 expression was positively correlated with key features of NASH (i.e., hepatic lipid content, lobular inflammation, and hepatocellular ballooning) in human liver biopsies. In summary, our results reveal a role of MST3 in controlling the dynamic metabolic balance of liver lipid catabolism vs. lipid anabolism. Our findings highlight MST3 as a potential drug target for the prevention and treatment of NASH and related complex metabolic diseases.-Cansby, E., Kulkarni, N. M., Magnusson, E., Kurhe, Y., Amrutkar, M., Nerstedt, A., Ståhlman, M., Sihlbom, C., Marschall, H.-U., Borén, J., Blüher, M., Mahlapuu, M. Protein kinase MST3 modulates lipid homeostasis in hepatocytes and correlates with nonalcoholic steatohepatitis in humans.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nagaraj M Kulkarni
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elin Magnusson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika Nerstedt
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|