1
|
Farrag M, Aljuhani R, Benicky J, Al Ahmed H, Misra SK, Mishra SK, Sharp JS, Doerksen RJ, Goldman R, Pomin VH. Heparan-6-O-endosulfatase 2, a cancer-related proteoglycan enzyme, is effectively inhibited by a specific sea cucumber fucosylated glycosaminoglycan. Glycobiology 2025; 35:cwaf025. [PMID: 40302034 PMCID: PMC12054995 DOI: 10.1093/glycob/cwaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Heparan-6-O-endosulfatase 2 (Sulf-2) is a proteoglycan enzyme that modifies sulfation of heparan sulfate proteoglycans. Dysregulation of Sulf-2 is associated with various pathological conditions, including cancer, which makes Sulf-2 a potential therapeutic target. Despite the key pathophysiological roles of Sulf-2, inhibitors remain insufficiently developed. In previous work, a fucosylated chondroitin sulfate from the sea cucumber Holothuria floridana (HfFucCS) exhibited potent Sulf-2 inhibition. This study investigates the structural basis of HfFucCS-mediated Sulf-2 inhibition, examines the binding profile of HfFucCS to Sulf-2, and explores the mode of inhibition. Additionally, a structurally diverse library of sulfated poly/oligosaccharides, including common glycosaminoglycans and unique marine sulfated glycans, was screened for Sulf-2 inhibition. Results from a high-throughput arylsulfatase assay and specific 6-O-desulfation assay have proved that HfFucCS is the most potent among the tested sulfated glycans, likely due to the presence of the unique 3,4-disulfated fucose structural motif. HfFucCS demonstrated non-competitive inhibition, and inhibitory analysis of its low-molecular-weight fragments suggests a minimum length of ~7.5 kDa for effective inhibition. Surface plasmon resonance analyses revealed that Sulf-2 binds to surface heparin with high affinity (KD of 0.817 nM). HfFucCS and its derivatives effectively disrupt this interaction. Results from mass spectrometry-hydroxyl radical protein footprinting and repulsive scaling replica exchange molecular dynamics indicate similarities in the binding of heparin and HfFucCS oligosaccharides to both the catalytic and hydrophilic domains of Sulf-2. These findings reveal the unique inhibitory properties of a structurally distinct marine glycosaminoglycan, supporting its further investigation as a selective and effective inhibitor for Sulf-2-associated cancer events.
Collapse
Affiliation(s)
- Marwa Farrag
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Reem Aljuhani
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| | - Julius Benicky
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Hoda Al Ahmed
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
| | - Sushil K Mishra
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, United States
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Radoslav Goldman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677, United States
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
2
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Pan Y, Zhou Y, Shen Y, Xu L, Liu H, Zhang N, Huang T, Meng K, Liu Y, Wang L, Bai G, Chen Q, Zhu Y, Zou X, Wang S, Wang Z, Wang L. Hypoxia Stimulates PYGB Enzymatic Activity to Promote Glycogen Metabolism and Cholangiocarcinoma Progression. Cancer Res 2024; 84:3803-3817. [PMID: 39163511 DOI: 10.1158/0008-5472.can-24-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/13/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cholangiocarcinoma (CCA) displays enhanced glycolysis, pivotal for fulfilling the heightened energy demands intrinsic to its malignant progression. Recent research has indicated that endogenous glycogen rather than exogenous glucose acts as the major carbon source for glycolysis, highlighting the need to better understand the regulation of glycogen homeostasis in CCA. Here, through comprehensive integrative analysis, we identified that glycogen phosphorylase brain form (PYGB), the main enzyme involved in glycogen homeostasis, was markedly upregulated in CCA tissues, serving as an independent prognostic indicator for human patients with CCA. Moreover, elevated PYGB expression potentiated cholangiocarcinogenesis and augmented CCA cell proliferation in both organoid and xenograft models. Hypoxia stimulated PYGB activity in a phosphoglycerate kinase 1-dependent manner, leading to glycogenolysis and the subsequent release of glucose-6-phosphate (G6P) and thereby facilitating aerobic glycolysis. Notably, a virtual screening pinpointed the β-blocker carvedilol as a potent pharmacologic inhibitor of PYGB that could attenuate CCA progression. Collectively, these findings position PYGB as a promising prognostic biomarker and therapeutic target for CCA. Significance: Cholangiocarcinoma cells exhibit high glycogen phosphorylase activity under hypoxic conditions that mediates metabolic reprograming to promote glycolysis and support tumor development.
Collapse
Affiliation(s)
- Yani Pan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of China Pharmaceutical University, Nanjing, China
| | - Tianlu Huang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kui Meng
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yu Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Bai
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of China Pharmaceutical University, Nanjing, China
| | - Yun Zhu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Siliang Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhangding Wang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Papoutsoglou P, Pineau R, Leroux R, Louis C, L'Haridon A, Foretek D, Morillon A, Banales JM, Gilot D, Aubry M, Coulouarn C. TGFβ-induced long non-coding RNA LINC00313 activates Wnt signaling and promotes cholangiocarcinoma. EMBO Rep 2024; 25:1022-1054. [PMID: 38332153 PMCID: PMC10933437 DOI: 10.1038/s44319-024-00075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor β (TGFβ), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFβ signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFβ target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFβ induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.
Collapse
Grants
- Recurrent Funding Institut National de la Santé et de la Recherche Médicale (Inserm)
- Recurrent Funding,PhD felloship Université de Rennes 1 (University of Rennes 1)
- PhD fellowship Conseil Régional de Bretagne (Brittany Council)
- R22026NN,R21011NN Ligue Contre le Cancer (French League Against Cancer)
- R21043NN Fondation ARC pour la Recherche sur le Cancer (ARC)
- C18007NS,C20013NS,C20014NS INCa and ITMO Cancer AVIESAN (Alliance Nationale pour les Sciences de la Vie et de la Santé) dans le cadre du Plan cancer (Non-coding RNA in cancerology: fundamental to translational)
- R21095NN French Ministry of Health and the French National Cancer Institute, PRT-K20-136, CHU Rennes, CLCC Eugene Marquis, Rennes
- FIS PI18/01075,PI21/00922,CPII19/00008 Spanish Carlos III Health Institute (ISCIII) [(FIS PI18/01075, PI21/00922, and Miguel Servet Programme CPII19/00008) cofinanced by "Fondo Europeo de Desarrollo Regional" (FEDER)] and CIBERehd (ISCIII)
- HR17-00601 'la Caixa' Foundation ('la Caixa')
- EU/2019/AMMFt/001 AMMF-The Cholangiocarcinoma Charity
- 06119JB PSC Partners US and PSC Supports UK
- 825510/ESCALON European Union Horizon 2020 Research and Innovation Program
- EU TRANSCAN23-002-2023-129,INCa_18688 Institut National Du Cancer (INCa)
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Raphaël Pineau
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Raffaële Leroux
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Anaïs L'Haridon
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Dominika Foretek
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, CIBERehd, Ikerbasque, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - David Gilot
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, SE-48183, Mölndal, Sweden
| | - Marc Aubry
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) laboratory, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, F-35042, Rennes, France.
| |
Collapse
|
5
|
Han M, Zhu H, Chen X, Luo X. 6-O-endosulfatases in tumor metastasis: heparan sulfate proteoglycans modification and potential therapeutic targets. Am J Cancer Res 2024; 14:897-916. [PMID: 38455409 PMCID: PMC10915330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Metastasis is the leading cause of cancer-associated mortality. Although advances in the targeted treatment and immunotherapy have improved the management of some cancers, the prognosis of metastatic cancers remains unsatisfied. Therefore, the specific mechanisms in tumor metastasis need further investigation. 6-O-endosulfatases (SULFs), comprising sulfatase1 (SULF1) and sulfatase 2 (SULF2), play pivotal roles in the post-synthetic modifications of heparan sulfate proteoglycans (HSPGs). Consequently, these extracellular enzymes can regulate a variety of downstream pathways by modulating HSPGs function. During the past decades, researchers have detected the expression of SULF1 and SULF2 in most cancers and revealed their roles in tumor progression and metastasis. Herein we reviewed the metastasis steps which SULFs participated in, elucidated the specific roles and mechanisms of SULFs in metastasis process, and discussed the effects of SULFs in different types of cancers. Moreover, we summarized the role of targeting SULFs in combination therapy to treat metastatic cancers, which provided some novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| | - Xin Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary DiseasesWuhan 430030, Hubei, China
| |
Collapse
|
6
|
Benicky J, Sanda M, Panigrahi A, Liu J, Wang Z, Pagadala V, Su G, Goldman R. A 6-O-endosulfatase activity assay based on synthetic heparan sulfate oligomers. Glycobiology 2023; 33:384-395. [PMID: 37052463 PMCID: PMC10243761 DOI: 10.1093/glycob/cwad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Sulf-2 is an extracellular heparan 6-O-endosulfatase involved in the postsynthetic editing of heparan sulfate (HS), which regulates many important biological processes. The activity of the Sulf-2 and its substrate specificity remain insufficiently characterized in spite of more than two decades of studies of this enzyme. This is due, in part, to the difficulties in the production and isolation of this highly modified protein and due to the lack of well-characterized synthetic substrates for the probing of its catalytic activity. We introduce synthetic HS oligosaccharides to fill this gap, and we use our recombinant Sulf-2 protein to show that a paranitrophenol (pNP)-labeled synthetic oligosaccharide allows a reliable quantification of its enzymatic activity. The substrate and products of the desulfation reaction are separated by ion exchange high-pressure liquid chromatography and quantified by UV absorbance. This simple assay allows the detection of the Sulf-2 activity at high sensitivity (nanograms of the enzyme) and specificity. The method also allowed us to measure the heparan 6-O-endosulfatase activity in biological samples as complex as the secretome of cancer cell lines. Our in vitro measurements show that the N-glycosylation of the Sulf-2 enzyme affects the activity of the enzyme and that phosphate ions substantially decrease the Sulf-2 enzymatic activity. This assay offers an efficient, sensitive, and specific measurement of the heparan 6-O-endosulfatase activity that could open avenues to in vivo activity measurements and improve our understanding of the enzymatic editing of the sulfation of heparan.
Collapse
Affiliation(s)
- Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| | - Miloslav Sanda
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, United States
- Max-Planck-Institut fuer Herz- und Lungenforschung, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | | | - Guowei Su
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
7
|
Zhang W, Yang F, Zheng Z, Li C, Mao S, Wu Y, Wang R, Zhang J, Zhang Y, Wang H, Li W, Huang J, Yao X. Sulfatase 2 Affects Polarization of M2 Macrophages through the IL-8/JAK2/STAT3 Pathway in Bladder Cancer. Cancers (Basel) 2022; 15:cancers15010131. [PMID: 36612128 PMCID: PMC9818157 DOI: 10.3390/cancers15010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Sulfatase 2 (SULF2) affects the occurrence and development of cancer by regulating HSPG-binding factors. However, the mechanism of SULF2 in bladder cancer (BCa) is unknown. To determine this, we analyzed the RNA sequencing of 90 patients with BCa. The results showed that the expression of SULF2 was closely related to the prognosis of BCa. Moreover, in vivo and in vitro experiments revealed that SULF2 promotes tumor proliferation and invasion. Furthermore, using a mouse orthotopic BCa model and flow cytometric analysis, we identified that SULF2 affects the polarization of macrophages. Mechanism studies clarified that SULF2 promoted the release of HSPG-binding factors, such as IL-8, in the microenvironment through β-catenin. Meanwhile, IL-8 activated the JAK2/STAT3 pathway of macrophages to promote the expression of CD163 and CD206, thereby regulating the polarization of macrophages to the M2-type. Conclusively, these results indicate that SULF2 plays an important role in regulating the microenvironment of BCa and promotes the polarization of macrophages to the M2-type by secreting IL-8, which further deepens the malignant progression of BCa.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Fuhan Yang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Zongtai Zheng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Cheng Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Yuan Wu
- Department of Urology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Yue Zhang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Shanghai 200435, China
| | - Hong Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
| | - Jianhua Huang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
- Correspondence: (J.H.); (X.Y.)
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200070, China
- Correspondence: (J.H.); (X.Y.)
| |
Collapse
|
8
|
Kawamura E, Matsubara T, Daikoku A, Deguchi S, Kinoshita M, Yuasa H, Urushima H, Odagiri N, Motoyama H, Kotani K, Kozuka R, Hagihara A, Fujii H, Uchida‐Kobayashi S, Tanaka S, Takemura S, Iwaisako K, Enomoto M, Taguchi YH, Tamori A, Kubo S, Ikeda K, Kawada N. Suppression of intrahepatic cholangiocarcinoma cell growth by SKI via upregulation of the CDK inhibitor p21. FEBS Open Bio 2022; 12:2122-2135. [PMID: 36114826 PMCID: PMC9714377 DOI: 10.1002/2211-5463.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023] Open
Abstract
Cholangiocarcinoma (CC) has a poor prognosis and different driver genes depending on the site of onset. Intrahepatic CC is the second-most common liver cancer after hepatocellular carcinoma, and novel therapeutic targets are urgently needed. The present study was conducted to identify novel therapeutic targets by exploring differentially regulated genes in human CC. MicroRNA (miRNA) and mRNA microarrays were performed using tissue and serum samples obtained from 24 surgically resected hepatobiliary tumor cases, including 10 CC cases. We conducted principal component analysis to identify differentially expressed miRNA, leading to the identification of miRNA-3648 as a differentially expressed miRNA. We used an in silico screening approach to identify its target mRNA, the tumor suppressor Sloan Kettering Institute (SKI). SKI protein expression was decreased in human CC cells overexpressing miRNA-3648, endogenous SKI protein expression was decreased in human CC tumor tissues, and endogenous SKI mRNA expression was suppressed in human CC cells characterized by rapid growth. SKI-overexpressing OZ cells (human intrahepatic CC cells) showed upregulation of cyclin-dependent kinase inhibitor p21 mRNA and protein expression and suppressed cell proliferation. Nuclear expression of CDT1 (chromatin licensing and DNA replication factor 1), which is required for the G1/S transition, was suppressed in SKI-overexpressing OZ cells. SKI knockdown resulted in the opposite effects. Transgenic p21-luciferase was activated in SKI-overexpressing OZ cells. These data indicate SKI involvement in p21 transcription and that SKI-p21 signaling causes cell cycle arrest in G1, suppressing intrahepatic CC cell growth. Therefore, SKI may be a potential therapeutic target for intrahepatic CC.
Collapse
Affiliation(s)
- Etsushi Kawamura
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Sanae Deguchi
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Masahiko Kinoshita
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Naoshi Odagiri
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hiroyuki Motoyama
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Kohei Kotani
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Ritsuzo Kozuka
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Atsushi Hagihara
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | | | - Shogo Tanaka
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Shigekazu Takemura
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Keiko Iwaisako
- Department of Medical Life SystemsDoshisha University Graduate School of Life and Medical SciencesKyotoJapan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | | | - Akihiro Tamori
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Shoji Kubo
- Department of Hepato‐Biliary‐Pancreatic Surgery, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of MedicineOsaka Metropolitan UniversityJapan
| |
Collapse
|
9
|
Yang Y, Ahn J, Edwards NJ, Benicky J, Rozeboom AM, Davidson B, Karamboulas C, Nixon KCJ, Ailles L, Goldman R. Extracellular Heparan 6- O-Endosulfatases SULF1 and SULF2 in Head and Neck Squamous Cell Carcinoma and Other Malignancies. Cancers (Basel) 2022; 14:cancers14225553. [PMID: 36428645 PMCID: PMC9688903 DOI: 10.3390/cancers14225553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Pan-cancer analysis of TCGA and CPTAC (proteomics) data shows that SULF1 and SULF2 are oncogenic in a number of human malignancies and associated with poor survival outcomes. Our studies document a consistent upregulation of SULF1 and SULF2 in HNSC which is associated with poor survival outcomes. These heparan sulfate editing enzymes were considered largely functional redundant but single-cell RNAseq (scRNAseq) shows that SULF1 is secreted by cancer-associated fibroblasts in contrast to the SULF2 derived from tumor cells. Our RNAScope and patient-derived xenograft (PDX) analysis of the HNSC tissues fully confirm the stromal source of SULF1 and explain the uniform impact of this enzyme on the biology of multiple malignancies. In summary, SULF2 expression increases in multiple malignancies but less consistently than SULF1, which uniformly increases in the tumor tissues and negatively impacts survival in several types of cancer even though its expression in cancer cells is low. This paradigm is common to multiple malignancies and suggests a potential for diagnostic and therapeutic targeting of the heparan sulfatases in cancer diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Nathan J. Edwards
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Julius Benicky
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Aaron M. Rozeboom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bruce Davidson
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, DC 20057, USA
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Kevin C. J. Nixon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Radoslav Goldman
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Correspondence: ; Tel.: +1-202-687-9868
| |
Collapse
|
10
|
Zhang G, Liu X, Jian A, Zheng K, Wang H, Hao J, Zhi S, Zhang X. CHST4 might promote the malignancy of cholangiocarcinoma. PLoS One 2022; 17:e0265069. [PMID: 35294478 PMCID: PMC8926211 DOI: 10.1371/journal.pone.0265069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is reported as an aggressive cancer which leads to high mortality and no effective therapeutic target has yet been discovered. Surgical resection is the main method to treat patients with CCA. However, only one-third of CCA patients have the opportunity to accept the operation, leading to poor prognosis for CCA patients. Therefore, it is necessary to search for new therapeutic targets of CCA or core genes involved in the happening and growth of CCA. Aim In this study, we utilized bioinformatics technology and accessed to several medical databases trying to find the core genes of CCA for the purpose of intervening CCA through figuring out an effective curative target. Methods Firstly, three differentially expressed genes (DEGs) were discovered from GEPIA, and by further observing the distribution and gene expression, CHST4 was obtained as the core gene. Afterwards, correlated genes of CHST4 in CCA were identified using UALCAN to construct a gene expression profile. We obtained PPI network by Search Tool for the Retrieval of Interacting Networks Genes (STRING) and screened core genes using cytoscape software. Functional enrichment analyses were carried out and the expression of CHST in human tissues and tumors was observed. Finally, a CCA model was established for qPCR and staining validation. Results Three differentially expressed genes (DEGs), CHST4, MBOAT4 and RP11-525K10.3, were obtained. All were more over-expressed in CCA samples than the normal, among which the change multiple and the gene expression difference of CHST4 was the most obvious. Therefore, CHST4 was selected as the core gene. We can see in our established protein–protein interaction (PPI) network that CHST4 had the highest degree of connectivity, demonstrating its close association with CCA. We found that genes were mainly enriched in CCs in the PPI networks genes which shows functional enrichment analysis results, including golgi lumen, extracellular space and extracellular region. CHST4 was found very specifically expressed in the bile duct and was significantly different from that in normal tissues. The overexpression of CHST4 was further verified in the established animal model of TAA-induced CCA in rats. Quantitative PCR (qPCR) demonstrated that CHST4 was significantly overexpressed in tumor tissues, verifying the role of CHST4 as the core gene of CCA. Conclusion CHST4 was increasingly expressed in CCA and CHST4 is worth being studied much further in the intervention of CCA.
Collapse
Affiliation(s)
- Guanran Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xuyue Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Aiwen Jian
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Kexin Zheng
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haiyan Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Sujuan Zhi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiaoli Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
11
|
Ko S, Kim M, Molina L, Sirica AE, Monga SP. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:283-317. [PMID: 35961703 PMCID: PMC9972177 DOI: 10.1016/bs.acr.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver cancer, is a highly lethal epithelial cell malignancy exhibiting features of cholangiocyte differentiation. iCCAs can potentially develop from multiple cell types of origin within liver, including immature or mature cholangiocytes, hepatic stem cells/progenitor cells, and from transdifferentiation of hepatocytes. Understanding the molecular mechanisms and genetic drivers that diversely drive specific cell lineage pathways leading to iCCA has important biological and clinical implications. In this context, activation of the YAP1-TEAD dependent transcription, driven by Hippo-dependent or -independent diverse mechanisms that lead to the stabilization of YAP1 is crucially important to biliary fate commitment in hepatobiliary cancer. In preclinical models, YAP1 activation in hepatocytes or cholangiocytes is sufficient to drive their malignant transformation into iCCA. Moreover, nuclear YAP1/TAZ is highly prevalent in human iCCA irrespective of the varied etiology, and significantly correlates with poor prognosis in iCCA patients. Based on the ubiquitous expression and diverse physiologic roles for YAP1/TAZ in the liver, recent studies have further revealed distinct functions of active YAP1/TAZ in regulating tumor metabolism, as well as the tumor immune microenvironment. In the current review, we discuss our current understanding of the various roles of the Hippo-YAP1 signaling in iCCA pathogenesis, with a specific focus on the roles played by the Hippo-YAP1 pathway in modulating biliary commitment and oncogenicity, iCCA metabolism, and immune microenvironment. We also discuss the therapeutic potential of targeting the YAP1/TAZ-TEAD transcriptional machinery in iCCA, its current limitations, and what future studies are needed to facilitate clinical translation.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| | - Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, PA, United States.
| |
Collapse
|