1
|
Zhang Y, Yang J, Gong Y, Liu Z, Yang Y, Song X, Gao Y, Xiong Y, Wang D, Fu K, Jia L, Shi X. RalB promotes lymph node metastasis in tongue squamous cell carcinoma. Genes Genomics 2025:10.1007/s13258-025-01628-9. [PMID: 40208483 DOI: 10.1007/s13258-025-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/18/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Lymph nodes metastasis is the main metastasis mode of tongue squamous cell carcinoma (TSCC). Ras related GTP binding protein B (RalB) have been recently described that it was involved in tumor growth and metastasis, but the effect in TSCC is still ill-defined. OBJECTIVE This study provides insights into the role of RALB as a prognostic factor in head and neck squamous cell carcinoma (HNSCC) and demonstrates its involvement in promoting lymph node metastasis in TSCC. METHODS Firstly, the expression level of RALB and the relationship with clinical features were examined. Subsequently, RALB knockdown Cal-27 cells orthotopic xenotransplantation in the tongue of BALB/c nude mice were established. Finally, using Connectivity Map (CMAP) database to find possible drugs. RESULTS Firstly, RALB could not only predict the cancer patients' prognosis and survival and but also act as a potential prognostic factor, particularly in HNSCC by pan-cancer bioinformatics analysis. In addition, we found that RalB promoted tumor growth and lymph node metastasis. Finally, we identified Tirabrutinib (ONO-4059) targeting RalB with good binding properties. CONCLUSIONS RalB act as a prognostic gene in HNSCC, and promote lymph node metastasis in early stage of TSCC.
Collapse
Affiliation(s)
- Yuman Zhang
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, 401147, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jiali Yang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Zhihan Liu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Yanguang Yang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xiaoyong Song
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Yajun Xiong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Dan Wang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Kai Fu
- Department of Otolaryngology Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050000, Hebei Province, China.
| | - Lifeng Jia
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, 401147, China.
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, No.118 Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| | - Xinli Shi
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, 401147, China.
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Chen B, Wang D, Xu Y, Guo Q, Pan J, Yu S, Fang Y, Xiao S, Ruan Y, Yang S, Lin M, Hong J, Zhan Z, Lin S. 5-Hydroxymethylcytosines in circulating cell-free DNA as a diagnostic biomarker for nasopharyngeal carcinoma. Eur J Cancer 2024; 210:114294. [PMID: 39213787 DOI: 10.1016/j.ejca.2024.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To evaluate the diagnostic value of 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA) for nasopharyngeal carcinoma (NPC) and to develop a diagnostic model. METHODS Genome-wide 5hmC profiles in cfDNA from 174 NPC patients and 146 non-cancer individuals were analyzed using the 5hmC-Seal technique. A cfDNA 5hmC-based diagnostic model to identify NPC patients was developed using least absolute shrinkage and selection operator (LASSO) logistic regression, and performance was evaluated with receiver operating characteristic (ROC) curves and confusion matrices. RESULTS The 5hmC-Seal data from patients with NPC showed a different genome-wide distribution than non-tumor samples. Our initial analysis revealed a 12-gene-based 5hmC marker panel to be an accurate diagnostic model effectively distinguishing between NPC samples and non-cancerous samples (training set: area under curve (AUC)= 0.97 [95 % CI: 0.94-0.99]; and test set: AUC= 0.93 [95 % CI: 0.88-0.98]) superior to EBV DNA testing. The diagnostic score performed well in differentiating the non-cancer subjects from early-stage NPC (training set: AUC=0.99 [95 % CI: 0.98-1]; test set: AUC=0.98 [95 % CI: 0.95-1]), and advanced-stage NPC (training set: AUC=0.96 [95 % CI: 0.93-0.99]; test set: AUC=0.93 [95 % CI: 0.88-0.98]). Notably, in EBV-negative patients, the diagnostic scores showed excellent capacity for distinguishing EBV-negative patients with NPC from non-cancer subjects in both the training set (AUC= 0.94 [95 % CI: 0.88-1]) and test set (AUC=0.91 [95 % CI: 0.81-1]). CONCLUSION 5hmC modifications in cfDNA are promising noninvasive biomarkers for NPC, offering high sensitivity and specificity, particularly for early-stage and EBV-negative NPC.
Collapse
Affiliation(s)
- Bijuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yun Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Jianji Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Sisi Yu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yunxiang Fang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Shuxiang Xiao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yuanyuan Ruan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Shanshan Yang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Mingan Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| | - Zhouwei Zhan
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China.
| | - Shaojun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China.
| |
Collapse
|
3
|
Tsui YM, Ho DWH, Sze KMF, Lee JMF, Lee E, Zhang Q, Cheung GCH, Tang CN, Tang VWL, Cheung ETY, Lo ILO, Chan ACY, Cheung TT, Ng IOL. Sorted-Cell Sequencing on HCC Specimens Reveals EPS8L3 as a Key Player in CD24/CD13/EpCAM-Triple Positive, Stemness-Related HCC Cells. Cell Mol Gastroenterol Hepatol 2024; 18:101358. [PMID: 38750898 PMCID: PMC11238133 DOI: 10.1016/j.jcmgh.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a heterogeneous cancer with varying levels of liver tumor initiating or cancer stem cells in the tumors. We aimed to investigate the expression of different liver cancer stem cell (LCSC) markers in human HCCs and identify their regulatory mechanisms in stemness-related cells. METHODS We used an unbiased, single-marker sorting approach by flow cytometry, fluorescence-activated cell sorting, and transcriptomic analyses on HCC patients' resected specimens. Knockdown approach was used, and relevant functional assays were conducted on the identified targets of interest. RESULTS Flow cytometry on a total of 60 HCC resected specimens showed significant heterogeneity in the expression of LCSC markers, with CD24, CD13, and EpCAM mainly contributing to this heterogeneity. Concomitant expression of CD24, CD13, and EpCAM was detected in 32 HCC samples, and this was associated with advanced tumor stages. Transcriptomic sequencing on the HCC cells sorted for these individual markers identified epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8L3) as a common gene associated with the 3 markers and was functionally validated in HCC cells. Knocking down EPS8L3 suppressed the expression of all 3 markers. To search for the upstream regulation of EPS8L3, we found SP1 bound to EPS8L3 promoter to drive EPS8L3 expression. Furthermore, using Akt inhibitor MK2206, we showed that Akt signaling-driven SP1 drove the expression of the 3 LCSC markers. CONCLUSIONS Our findings suggest that Akt signaling-driven SP1 promotes EPS8L3 expression, which is critical in maintaining the downstream expression of CD24, CD13, and EpCAM. The findings provide insight into potential LCSC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Qingyang Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Gary Cheuk-Hang Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | | | | | | | | | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Lu J, Feng Y, Yu D, Li H, Li W, Chen H, Chen L. A review of nuclear Dbf2-related kinase 1 (NDR1) protein interaction as promising new target for cancer therapy. Int J Biol Macromol 2024; 259:129188. [PMID: 38184050 DOI: 10.1016/j.ijbiomac.2023.129188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Nuclear Dbf2-related kinase 1 (NDR1) is a nuclear Dbf2-related (NDR) protein kinase family member, which regulates cell functions and participates in cell proliferation and differentiation through kinase activity. NDR1 regulates physiological functions by interacting with different proteins. Protein-protein interactions (PPIs) are crucial for regulating biological processes and controlling cell fate, and as a result, it is beneficial to study the actions of PPIs to elucidate the pathological mechanism of diseases. The previous studies also show that the expression of NDR1 is deregulated in numerous human cancer samples and it needs the context-specific targeting strategies for NDR1. Thus, a comprehensive understanding of the direct interaction between NDR1 and varieties of proteins may provide new insights into cancer therapies. In this review, we summarize recent studies of NDR1 in solid tumors, such as prostate cancer and breast cancer, and explore the mechanism of action of PPIs of NDR1 in tumors.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Croft D, Lodhia P, Lourenco S, MacKay C. Effectively utilizing publicly available databases for cancer target evaluation. NAR Cancer 2023; 5:zcad035. [PMID: 37457379 PMCID: PMC10346432 DOI: 10.1093/narcan/zcad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The majority of compounds designed against cancer drug targets do not progress to become approved drugs, mainly due to lack of efficacy and/or unmanageable toxicity. Robust target evaluation is therefore required before progressing through the drug discovery process to reduce the high attrition rate. There are a wealth of publicly available databases that can be mined to generate data as part of a target evaluation. It can, however, be challenging to learn what databases are available, how and when they should be used, and to understand the associated limitations. Here, we have compiled and present key, freely accessible and easy-to-use databases that house informative datasets from in vitro, in vivo and clinical studies. We also highlight comprehensive target review databases that aim to bring together information from multiple sources into one-stop portals. In the post-genomics era, a key objective is to exploit the extensive cell, animal and patient characterization datasets in order to deliver precision medicine on a patient-specific basis. Effective utilization of the highlighted databases will go some way towards supporting the cancer research community achieve these aims.
Collapse
Affiliation(s)
- Daniel Croft
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Puja Lodhia
- Cancer Research Horizons, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sofia Lourenco
- Cancer Research Horizons, The Francis Crick Institute, London, NW1 1AT, UK
| | - Craig MacKay
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| |
Collapse
|
6
|
Jin H, Qin S, He J, Xiao J, Li Q, Mao Y, Zhao L. Systematic pan-cancer analysis identifies RALA as a tumor targeting immune therapeutic and prognostic marker. Front Immunol 2022; 13:1046044. [PMID: 36466919 PMCID: PMC9713825 DOI: 10.3389/fimmu.2022.1046044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION RALA is a member of the small GTPase Ras superfamily and has been shown to play a role in promoting cell proliferation and migration in most tumors, and increase the resistance of anticancer drugs such as imatinib and cisplatin. Although many literatures have studied the cancer-promoting mechanism of RALA, there is a lack of relevant pan-cancer analysis. METHODS This study systematically analyzed the differential expression and mutation of RALA in pan-cancer, including different tissues and cancer cell lines, and studied the prognosis and immune infiltration associated with RALA in various cancers. Next, based on the genes co-expressed with RALA in pan-cancer, we selected 241 genes with high correlation for enrichment analysis. In terms of pan-cancer, we also analyzed the protein-protein interaction pathway of RALA and the application of small molecule drug Guanosine-5'-Diphosphate. We screened hepatocellular cancer (HCC) to further study RALA. RESULTS The results indicated that RALA was highly expressed in most cancers. RALA was significantly correlated with the infiltration of B cells and macrophages, as well as the expression of immune checkpoint molecules such as CD274, CTLA4, HAVCR2 and LAG3, suggesting that RALA can be used as a kind of new pan-cancer immune marker. The main functions of 241 genes are mitosis and protein localization to nucleosome, which are related to cell cycle. For HCC, the results displayed that RALA was positively correlated with common intracellular signaling pathways such as angiogenesis and apoptosis. DISCUSSION In summary, RALA was closely related to the clinical prognosis and immune infiltration of various tumors, and RALA was expected to become a broad-spectrum molecular immune therapeutic target and prognostic marker for pan-cancer.
Collapse
Affiliation(s)
- Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Richardson DS, Spehar JM, Han DT, Chakravarthy PA, Sizemore ST. The RAL Enigma: Distinct Roles of RALA and RALB in Cancer. Cells 2022; 11:cells11101645. [PMID: 35626682 PMCID: PMC9139244 DOI: 10.3390/cells11101645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
RALA and RALB are highly homologous small G proteins belonging to the RAS superfamily. Like other small GTPases, the RALs are molecular switches that can be toggled between inactive GDP-bound and active GTP-bound states to regulate diverse and critical cellular functions such as vesicle trafficking, filopodia formation, mitochondrial fission, and cytokinesis. The RAL paralogs are activated and inactivated by a shared set of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) and utilize similar sets of downstream effectors. In addition to their important roles in normal cell biology, the RALs are known to be critical mediators of cancer cell survival, invasion, migration, and metastasis. However, despite their substantial similarities, the RALs often display striking functional disparities in cancer. RALA and RALB can have redundant, unique, or even antagonistic functions depending on cancer type. The molecular basis for these discrepancies remains an important unanswered question in the field of cancer biology. In this review we examine the functions of the RAL paralogs in normal cellular physiology and cancer biology with special consideration provided to situations where the roles of RALA and RALB are non-redundant.
Collapse
|