1
|
Bharath N, DiPietro E, Durfee O, Kycia I, Splaine J, Sethupathy P, Rogers MS, Vakili K. A novel high-throughput screening platform to identify inhibitors of DNAJB1-PRKACA-driven transcriptional activity in fibrolamellar carcinoma. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 32:100221. [PMID: 39947627 DOI: 10.1016/j.slasd.2025.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Fibrolamellar carcinoma (FLC) is a primary liver cancer with a poor prognosis, primarily due to the lack of effective chemotherapeutic options. The DNAJB1-PRKACA (DP) gene fusion is recognized as the key oncogenic driver in FLC. This fusion arises from a ∼400 kb heterozygous deletion on chromosome 19, which fuses exon 1 of DNAJB1 with exons 2-10 of PRKACA, the gene encoding the catalytic subunit of protein kinase A (PKA). While targeting DP is considered a promising therapeutic approach, attempts to inhibit the kinase function of the DP fusion protein have been largely unsuccessful due to off-target effects on wild-type PKA. In response to this challenge, we developed a high-throughput screening (HTS) assay to identify inhibitors of DP's downstream signaling pathways involved in transcriptional regulation. Our previous research identified LINC00473 as a transcriptional marker for DP protein expression, and LINC00473 is known to be upregulated in FLC tumors. Additionally, evidence suggests that LINC00473 promotes FLC tumor growth. Based on the relationship between DP and LINC00473 expression, we engineered the HEK-DP-Luc reporter cell line by modifying HEK293 cells to express DP at the endogenous locus and to express the NanoLuc luciferase gene under the control of the LINC00473 promoter and enhancer. We have optimized the HEK-DP-Luc cells for HTS, and here we present our pipeline for primary screening and counter-screening to identify compounds that inhibit DP's downstream transcriptional activity. This HTS platform provides a novel approach for therapeutic drug discovery in FLC.
Collapse
Affiliation(s)
- Nihal Bharath
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Emma DiPietro
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Olivia Durfee
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer Splaine
- Institute of Chemistry and Cell Biology at Harvard Medical School, Boston, MA, USA.
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
| | - Khashayar Vakili
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Koshy A. Evolving Global Etiology of Hepatocellular Carcinoma (HCC): Insights and Trends for 2024. J Clin Exp Hepatol 2025; 15:102406. [PMID: 39346785 PMCID: PMC11426038 DOI: 10.1016/j.jceh.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/17/2024] [Indexed: 10/01/2024] Open
Abstract
The epidemiology of HCC is changing all over the world and the incidence of HCC is expected to continue increasing over the next 30 years. The changes are in the predisposing factors. Hepatitis B and hepatitis C as predisposing etiologies are decreasing while NAFLD/MAFLD is increasing. The increase in MAFLD is so great that despite the decrease in hepatitis B and C, the overall incidence of HCC is increasing. HCC in persons below the age of 20 years has distinct characteristics different from that of HCC in adults. The changing etiology of hepatocellular carcinoma has implications for the early detection, prevention, the stage of HCC at time of detection and in the treatment of HCC. The extent of these changes and their significance are discussed.
Collapse
Affiliation(s)
- Abraham Koshy
- Departments of Gastroenterology, VPS Lakeshore Hospital, Kochi, 682040, India
| |
Collapse
|
3
|
Requena D, Medico JA, Soto-Ugaldi LF, Shirani M, Saltsman JA, Torbenson MS, Coffino P, Simon SM. Liver cancer multiomics reveals diverse protein kinase A disruptions convergently produce fibrolamellar hepatocellular carcinoma. Nat Commun 2024; 15:10887. [PMID: 39738196 PMCID: PMC11685927 DOI: 10.1038/s41467-024-55238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412 liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intrahepatic cholangiocarcinoma are analyzed, obtaining transcriptomic signatures unrestricted by experimental processing methods. These signatures reveal which dysregulations are unique to specific tumors and which are common to all liver cancers. Moreover, the transcriptomic FLC signature identifies a unifying phenotype for all FLC tumors regardless of how PKA was activated. We study this signature at multi-omics and single-cell levels in the first spatial transcriptomic characterization of FLC, identifying the contribution of tumor, normal, stromal, and infiltrating immune cells. Additionally, we study FLC metastases, finding small differences from the primary tumors.
Collapse
Affiliation(s)
- David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Jack A Medico
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - James A Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
SON SAM, BRAHMBHATT AKSHAAR, ZHAO KEN, MARINELLI BRETT, HARDING JAMES, JARNAGIN WILLIAM, ABOU-ALFA GHASSANK, YARMOHAMMADI HOOMAN. Liver-directed therapies for fibrolamellar carcinoma: A single-center experience. Oncol Res 2024; 32:1831-1836. [PMID: 39574471 PMCID: PMC11576953 DOI: 10.32604/or.2024.052985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 11/24/2024] Open
Abstract
Background This article aims to present the single-institution outcomes of patients with Fibrolamellar Carcinoma (FLC) treated with liver-directed therapies (LDT). Methods In this single-center retrospective study, all patients diagnosed with FLC who underwent LDT were identified. Between July 2012 and July 2023, six patients were identified. One patient was excluded due to bleeding. Demographic and clinical parameters were recorded. Complications within 30 days of the LDT were evaluated. Radiological treatment responses at 1, 6, and 12 months were assessed per mRECIST. Results A total of five patients, which included three females and two males, were reviewed. Three patients were treated with transarterial hepatic embolization (TAE; n = 3), transarterial radioembolization (TARE; n = 1), and combined TAE + radiofrequency ablation (n = 1). The objective response rate at one month was 80% [CR = 2 (40%), PR = 2 (40%), and SD = 1 (20%)]. At 12 months (n = 4), two patients demonstrated CR (50%) and two demonstrated PR (50%). Overall survival from LDT at five years was 50%. There was no 30-day mortality among this group of patients or any adverse event attributable to the LDT. Conclusion TAE, TARE, and ablation are safe and effective therapeutic options for FLC. Based on this study and previously published case reports, ablation and TARE yielded the most favorable results.
Collapse
Affiliation(s)
- SAM SON
- Department of Radiology, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| | - AKSHAAR BRAHMBHATT
- Department of Radiology, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| | - KEN ZHAO
- Department of Radiology, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| | - BRETT MARINELLI
- Department of Radiology, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| | - JAMES HARDING
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| | - WILLIAM JARNAGIN
- Division of Hepatobiliary Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| | - GHASSAN K. ABOU-ALFA
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| | - HOOMAN YARMOHAMMADI
- Department of Radiology, Memorial Sloan Kettering Cancer Center and Weill Medical College at Cornell University, New York, NY 10065, USA
| |
Collapse
|
5
|
Kirk AM, Crawford JC, Chou CH, Guy C, Pandey K, Kozlik T, Shah RK, Chung S, Nguyen P, Zhang X, Wang J, Bell M, Mettelman RC, Allen EK, Pogorelyy MV, Kim H, Minervina AA, Awad W, Bajracharya R, White T, Long D, Gordon B, Morrison M, Glazer ES, Murphy AJ, Jiang Y, Fitzpatrick EA, Yarchoan M, Sethupathy P, Croft NP, Purcell AW, Federico SM, Stewart E, Gottschalk S, Zamora AE, DeRenzo C, Strome SE, Thomas PG. DNAJB1-PRKACA fusion neoantigens elicit rare endogenous T cell responses that potentiate cell therapy for fibrolamellar carcinoma. Cell Rep Med 2024; 5:101469. [PMID: 38508137 PMCID: PMC10983114 DOI: 10.1016/j.xcrm.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.
Collapse
Affiliation(s)
- Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Tanya Kozlik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi K Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shanzou Chung
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jin Wang
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Resha Bajracharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Toni White
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald Long
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Morrison
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan S Glazer
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrew J Murphy
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yixing Jiang
- Department of Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony E Zamora
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott E Strome
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
6
|
Daniel SK, Sullivan KM, Dickerson LK, van den Bijgaart RJE, Utria AF, Labadie KP, Kenerson HL, Jiang X, Smythe KS, Campbell JS, Pierce RH, Kim TS, Riehle KJ, Yeung RS, Carter JA, Barry KC, Pillarisetty VG. Reversing immunosuppression in the tumor microenvironment of fibrolamellar carcinoma via PD-1 and IL-10 blockade. Sci Rep 2024; 14:5109. [PMID: 38429349 PMCID: PMC10907637 DOI: 10.1038/s41598-024-55593-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver tumor driven by the DNAJ-PKAc fusion protein that affects healthy young patients. Little is known about the immune response to FLC, limiting rational design of immunotherapy. Multiplex immunohistochemistry and gene expression profiling were performed to characterize the FLC tumor immune microenvironment and adjacent non-tumor liver (NTL). Flow cytometry and T cell receptor (TCR) sequencing were performed to determine the phenotype of tumor-infiltrating immune cells and the extent of T cell clonal expansion. Fresh human FLC tumor slice cultures (TSCs) were treated with antibodies blocking programmed cell death protein-1 (PD-1) and interleukin-10 (IL-10), with results measured by cleaved caspase-3 immunohistochemistry. Immune cells were concentrated in fibrous stromal bands, rather than in the carcinoma cell compartment. In FLC, T cells demonstrated decreased activation and regulatory T cells in FLC had more frequent expression of PD-1 and CTLA-4 than in NTL. Furthermore, T cells had relatively low levels of clonal expansion despite high TCR conservation across individuals. Combination PD-1 and IL-10 blockade signficantly increased cell death in human FLC TSCs. Immunosuppresion in the FLC tumor microenvironment is characterized by T cell exclusion and exhaustion, which may be reversible with combination immunotherapy.
Collapse
Affiliation(s)
- S K Daniel
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K M Sullivan
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - L K Dickerson
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - R J E van den Bijgaart
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A F Utria
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K P Labadie
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - H L Kenerson
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - X Jiang
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K S Smythe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J S Campbell
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R H Pierce
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - T S Kim
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K J Riehle
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - R S Yeung
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - J A Carter
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K C Barry
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - V G Pillarisetty
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
Gummadi J, Wang X, Xie C. Current Advances in the Treatment of Fibrolamellar Carcinoma of Liver. J Hepatocell Carcinoma 2023; 10:745-752. [PMID: 37215364 PMCID: PMC10198173 DOI: 10.2147/jhc.s406902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Fibrolamellar carcinoma (FLC) of the liver is a rare type of liver cancer that is prevalent in children and young adults, often less than 40 years old. The etiology is unclear. It presents without underlying liver disease with distinctive histological features such as fibrous collagen bands surrounding the tumor cells. Fusion protein DNAJB1-PRKACA is found in most of the cases. The prognosis of FLC is poor. Even though curative treatment option is surgery for a certain patient population, other treatment modalities including radiation, chemotherapy are currently being used without significant improvement of overall survival. Recently, targeted therapy and immunotherapy have been studied which may provide survival advantage in the future. This review sought to compile data from clinical trials and case reports/series to outline the current state of FLC treatment.
Collapse
Affiliation(s)
- Jyotsna Gummadi
- Department of Medicine, MedStar Franklin Square Medical Center, Baltimore, MD, 21237, USA
| | - Xin Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
- NCI CCR Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| |
Collapse
|
8
|
Abstract
The fight against rare cancers faces myriad challenges, including missed or wrong diagnoses, lack of information and diagnostic tools, too few samples and too little funding. Yet many advances in cancer biology, such as the realization that there are tumour suppressor genes, have come from studying well-defined, albeit rare, cancers. Fibrolamellar hepatocellular carcinoma (FLC), a typically lethal liver cancer, mainly affects adolescents and young adults. FLC is both rare, 1 in 5 million, and problematic to diagnose. From the paucity of data, it was not known whether FLC was one cancer or a collection with similar phenotypes, or whether it was genetically inherited or the result of a somatic mutation. A personal journey through a decade of work reveals answers to these questions and a road map of steps and missteps in our fight against a rare cancer.
Collapse
|