1
|
Tamagno WA, Vanin AP, Sutorillo NT, Bilibio D, Dada RA, Colla LM, Zamberlan DC, Kaizer RR, Barcellos LJG. Fruit extract of red pitaya (Hylocereus undatus) prevents and reverses stress-induced impairments in the cholinergic and antioxidant systems of Caenorhabditis elegans. J Food Biochem 2021; 46:e13981. [PMID: 34698395 DOI: 10.1111/jfbc.13981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022]
Abstract
The addition of fruit to the diet is very important, and we can use nutraceutical and functional foods for this supplement. A little-known fruit is a red pitaya (Hylocereus undatus) that has been widely reported to have a high antioxidant potential. In this study, we analyzed the in vitro and in vivo antioxidant capacity of microencapsulated pitaya extract on the behavior, antioxidant, and nervous system of the nematode Caenorhabditis elegans. The worms were treated with fruit extract before and after juglone-induced stress, to determine the protective or curative effects of pitaya. We have been evaluated cholinergic, antioxidant, and behavioral biomarkers. We have evidenced that the pulp of pitaya contains antioxidant compounds and can serve as a potential nutraceutical product. In addition, the fruit extract was effective in preventing and/or reverse the stress-induced damages, even at high levels of chemical stress at all evaluated parameters. PRACTICAL APPLICATIONS: The potential applications and uses aimed by this research are related to the supplementation of foods given the antioxidant effect. Our data suggested that the effect of the pitaya fruit microencapsulated pulp extract was effective to prevent and repair the damage caused by oxidative stress. Besides the use of this microencapsulated extract can be an auxiliary in the treatment of diseases related to oxidative damage as well as promoting senescent aging. Another important use is the application of this extract as a dietary supplement to fortify the antioxidant system.
Collapse
Affiliation(s)
- Wagner Antonio Tamagno
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, Brazil
| | - Ana Paula Vanin
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, Brazil.,Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, Brazil
| | - Nathália Tafarel Sutorillo
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, Brazil
| | - Denise Bilibio
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, Brazil
| | - Renata Affeldt Dada
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, Brazil
| | - Luciane Maria Colla
- Graduate Program in Food Science and Technology, Universidade de Passo Fundo, Passo Fundo, Brazil
| | - Daniele Coradini Zamberlan
- Biochemistry and Molecular Biology Department, Center of Natural and Exacts Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Rosilene Rodrigues Kaizer
- Biochemistry and Molecular Biology Laboratory of the Federal Institute of Education, Science and Technology of Rio Grande do Sul - Sertão Campus, City of Sertão, Brazil.,Graduate Program in Environmental Science and Technology, Federal University of Fronteira Sul (UFFS) - Erechim Campus, City of Erechim, Brazil
| | - Leonardo José Gil Barcellos
- Graduate Program in Bioexperimentation, University of Passo Fundo, Passo Fundo, Brazil.,Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
2
|
Shin J, Kong C, Lee J, Choi BY, Sim J, Koh CS, Park M, Na YC, Suh SW, Chang WS, Chang JW. Focused ultrasound-induced blood-brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model. ALZHEIMERS RESEARCH & THERAPY 2019; 11:110. [PMID: 31881998 PMCID: PMC6933667 DOI: 10.1186/s13195-019-0569-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Background The persistence of adult hippocampal neurogenesis (AHN) is sharply decreased in Alzheimer’s disease (AD). The neuropathologies of AD include the presence of amyloid-β deposition in plaques, tau hyperphosphorylation in neurofibrillary tangles, and cholinergic system degeneration. The focused ultrasound (FUS)-mediated blood-brain barrier opening modulates tau hyperphosphorylation, the accumulation of amyloid-β proteins, and increases in AHN. However, it remains unclear whether FUS can modulate AHN in cholinergic-deficient conditions. In this study, we investigated the effect of FUS on AHN in a cholinergic degeneration rat model of dementia. Methods Adult male Sprague-Dawley rats (n = 48; 200–250 g) were divided into control (phosphate-buffered saline injection), 192 IgG-saporin (SAP), and SAP+FUS groups; in the two latter groups, SAP was injected bilaterally into the lateral ventricle. We applied FUS to the bilateral hippocampus with microbubbles. Immunohistochemistry, enzyme-linked immunosorbent assay, immunoblotting, 5-bromo-2′-deoxyuridine labeling, an acetylcholinesterase assay, and the Morris water maze test were performed to assess choline acetyltransferase, acetylcholinesterase activity, brain-derived neurotrophic factor expression, neural proliferation, and spatial memory, respectively. Statistical significance of differences in between groups was calculated using one-way and two-way analyses of variance followed by Tukey’s multiple comparison test to determine the individual and interactive effects of FUS on immunochemistry and behavioral analysis. P < 0.05 was considered significant. Results Cholinergic degeneration in rats significantly decreased the number of choline acetyltransferase neurons (P < 0.05) in the basal forebrain, as well as AHN and spatial memory function. Rats that underwent FUS-mediated brain-blood barrier opening exhibited significant increases in brain-derived neurotrophic factor (BDNF; P < 0.05), early growth response protein 1 (EGR1) (P < 0.01), AHN (P < 0.01), and acetylcholinesterase activity in the frontal cortex (P < 0.05) and hippocampus (P < 0.01) and crossing over (P < 0.01) the platform in the Morris water maze relative to the SAP group after sonication. Conclusions FUS treatment increased AHN and improved spatial memory. This improvement was mediated by increased hippocampal BDNF and EGR1. FUS treatment may also restore AHN and protect against neurodegeneration, providing a potentially powerful therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jaewoo Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jihyeon Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Jiyeon Sim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University College of Medicine, International St Mary's Hospital, Incheon Metropolitan City, 22771, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Kim JW, Hahn KR, Yoo DY, Jung HY, Hwang IK, Seong JK, Yoon YS. Methionine-Choline Deprivation Impairs Adult Hippocampal Neurogenesis in C57BL/6 Mice. J Med Food 2019; 22:344-354. [PMID: 30990755 DOI: 10.1089/jmf.2018.4247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methionine and choline, which are essential nutrients for mammalian animals, are important for cell composition, as metabolic factors, and for the synthesis of other biochemical compounds for cell metabolism. Methionine and choline, which are methyl group donors, play key roles in the homocysteine cycle and neuronal development and maintenance. In this study, we investigated the effects of methionine and choline deficiency on adult hippocampal neurogenesis and neural stem cell (NSC) lineage in the adult stage. For this study, we divided C57BL/6 mice into three groups as follows: normal chow (NC)-fed, methionine choline sufficient (MCS) diet-fed, and methionine choline deficient (MCD) diet-fed mice. The mice were fed the NC, MCS, and MCD diets for 4 weeks from the age of 8 weeks. MCD diet-fed mice showed significantly decreased proliferation and differentiation of NSCs when compared with the NC diet-fed or MCS diet-fed mice. In addition, the survival of newly generated neurons was critically impaired in the MCD diet-fed mice. We confirmed a decrease in the proliferation and differentiation of NSCs after 4 weeks of MCD diet administration, compared with that in NC- and MCS diet-fed mice. MCD diet critically impaired NSCs survival and survival of neurons during the 4 weeks. The number of phosphorylated cyclic AMP response element binding (pCREB) protein immunoreactive nuclei was decreased in the MCD diet-fed mice compared with that in the NC- or MCS diet-fed group. These results suggest that suitable levels of methionine and choline are essential for the maintenance of hippocampal neurogenesis in mice and affect NSC proliferation and differentiation through phosphorylation of CREB.
Collapse
Affiliation(s)
- Jong Whi Kim
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Kyu Ri Hahn
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Dae Young Yoo
- 2 Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, Korea
| | - Hyo Young Jung
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - In Koo Hwang
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.,3 KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.,3 KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, South Korea
| | - Yeo Sung Yoon
- 1 Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea.,3 KMPC (Korea Mouse Phenotyping Center), Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Cadmium induced ROS alters M1 and M3 receptors, leading to SN56 cholinergic neuronal loss, through AChE variants disruption. Toxicology 2018; 394:54-62. [DOI: 10.1016/j.tox.2017.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
5
|
Ionita R, Postu PA, Beppe GJ, Mihasan M, Petre BA, Hancianu M, Cioanca O, Hritcu L. Cognitive-enhancing and antioxidant activities of the aqueous extract from Markhamia tomentosa (Benth.) K. Schum. stem bark in a rat model of scopolamine. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2017; 13:5. [PMID: 28351401 PMCID: PMC5371259 DOI: 10.1186/s12993-017-0123-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/21/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Plants of the genus Markhamia have been traditionally used by different tribes in various parts of West African countries, including Cameroun. Markhamia tomentosa (Benth.) K. Schum. (Bignoniaceae) is used as an antimalarial, anti-inflammatory, analgesic, antioxidant and anti-Alzheimer agent. The current study was undertaken in order to investigate its anti-amnesic and antioxidant potential on scopolamine-induced cognitive impairment and to determine its possible mechanism of action. METHODS Rats were pretreated with the aqueous extract (50 and 200 mg/kg, p.o.), for 10 days, and received a single injection of scopolamine (0.7 mg/kg, i.p.) before training in Y-maze and radial arm-maze tests. The biochemical parameters in the rat hippocampus were also assessed to explore oxidative status. Statistical analyses were performed using two-way ANOVA followed by Tukey's post hoc test. F values for which p < 0.05 were regarded as statistically significant. RESULTS In the scopolamine-treated rats, the aqueous extract improved memory in behavioral tests and decreased the oxidative stress in the rat hippocampus. Also, the aqueous extract exhibited anti-acetylcholinesterase activity. CONCLUSIONS These results suggest that the aqueous extract ameliorates scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Collapse
Affiliation(s)
- Radu Ionita
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Paula Alexandra Postu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Galba Jean Beppe
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, PO Box, 812, Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Maroua, PO Box, 814, Maroua, Cameroon
| | - Marius Mihasan
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Brindusa Alina Petre
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Gr. T. Popa”, 16 University Str., 700115 Iasi, Romania
| | - Oana Cioanca
- Faculty of Pharmacy, University of Medicine and Pharmacy “Gr. T. Popa”, 16 University Str., 700115 Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, No. 11, 700506 Iasi, Romania
| |
Collapse
|
6
|
Primary Investigation for the Mechanism of Biatractylolide from Atractylodis Macrocephalae Rhizoma as an Acetylcholinesterase Inhibitor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7481323. [PMID: 27642355 PMCID: PMC5013199 DOI: 10.1155/2016/7481323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
Biatractylolide was isolated from ethyl acetate extract of dried Atractylodis Macrocephalae Rhizoma root by multistep chromatographic processing. Structure of biatractylolide was confirmed by (1)H-NMR and (13)C-NMR. The IC50 on acetylcholinesterase (AChE) activity was 6.5458 μg/mL when the control IC50 value of huperzine A was 0.0192 μg/mL. Molecular Docking Software (MOE) was used to discover molecular sites of action between biatractylolide and AChE protein by regular molecular docking approaches. Moreover, biatractylolide downregulated the expression of AChE of MEF and 293T cells in a dose-dependent manner. These results demonstrated that the molecular mechanisms of inhibitory activities of biatractylolide on AChE are not only through binding to AChE, but also via reducing AChE expression by inhibiting the activity of GSK3β.
Collapse
|
7
|
Nagy PM, Aubert I. Overexpression of the vesicular acetylcholine transporter enhances dendritic complexity of adult-born hippocampal neurons and improves acquisition of spatial memory during aging. Neurobiol Aging 2015; 36:1881-9. [DOI: 10.1016/j.neurobiolaging.2015.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 11/25/2022]
|
8
|
Du A, Xie J, Guo K, Yang L, Wan Y, OuYang Q, Zhang X, Niu X, Lu L, Wu J, Zhang X. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov 2015; 1:15002. [PMID: 27462404 PMCID: PMC4851313 DOI: 10.1038/celldisc.2015.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/27/2015] [Indexed: 12/28/2022] Open
Abstract
In addition to terminating neurotransmission by hydrolyzing acetylcholine, synaptic acetylcholinesterase (AChES) has been found to have a pro-apoptotic role. However, the underlying mechanism has rarely been investigated. Here, we report a nuclear translocation-dependent role for AChES as an apoptotic deoxyribonuclease (DNase). AChES polypeptide binds to and cleaves naked DNA at physiological pH in a Ca(2+)-Mg(2+)-dependent manner. It also cleaves chromosomal DNA both in pre-fixed and in apoptotic cells. In the presence of a pan-caspase inhibitor, the cleavage still occurred after nuclear translocation of AChES, implying that AChES-DNase acts in a CAD- and EndoG-independent manner. AChE gene knockout impairs apoptotic DNA cleavage; this impairment is rescued by overexpression of the wild-type but not (aa 32-138)-deleted AChES. Furthermore, in comparison with the nuclear-localized wild-type AChES, (aa 32-138)-deleted AChES loses the capacity to initiate apoptosis. These observations confirm that AChES mediates apoptosis via its DNase activity.
Collapse
Affiliation(s)
- Aiying Du
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jing Xie
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Kaijie Guo
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Lei Yang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yihan Wan
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Qi OuYang
- Department of Pathology, School of Basic Medical Sciences, Fudan University , Shanghai, China
| | - Xuejin Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xin Niu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Lu Lu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jun Wu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xuejun Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
9
|
Abstract
Transcriptomic studies have revealed that the brains of sleeping and awake animals differ significantly at the molecular level, with hundreds of brain transcripts changing their expression across behavioral states. However, it was unclear how sleep affects specific cells types, such as oligodendrocytes, which make myelin in the healthy brain and in response to injury. In this review, I summarize the recent findings showing that several genes expressed at higher levels during sleep are involved in the synthesis/maintenance of all membranes and of myelin in particular. In addition, I will discuss the effect of sleep and wake on oligodendrocyte precursor cells (OPCs), providing a working hypothesis on the function of REM sleep and acetylcholine in OPC proliferation.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
10
|
Cholinergic receptor blockade by scopolamine and mecamylamine exacerbates global cerebral ischemia induced memory dysfunction in C57BL/6J mice. Nitric Oxide 2014; 43:62-73. [DOI: 10.1016/j.niox.2014.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/16/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022]
|
11
|
Sifringer M, Bendix I, von Haefen C, Endesfelder S, Kalb A, Bührer C, Felderhoff-Mueser U, Spies CD. Oxygen toxicity is reduced by acetylcholinesterase inhibition in the developing rat brain. Dev Neurosci 2013; 35:255-64. [PMID: 23445753 DOI: 10.1159/000346723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
The cholinergic anti-inflammatory pathway is a neural mechanism that suppresses the innate inflammatory response and controls inflammation employing acetylcholine as the key endogenous mediator. In this study, we investigated the effects of the cholinergic agonists, physostigmine and donepezil, on neurodegeneration, inflammation and oxidative stress during oxygen toxicity in the developing rat brain. The aim of this study was to investigate the level of neurodegeneration, expression of proinflammatory cytokines, glutathione and lipid peroxidation after hyperoxia and treatment with the acetylcholinesterase (AChE) inhibitors, physostigmine and donepezil in the brain of neonatal rats. Six-day-old Wistar rats were exposed to 80% oxygen for 12-24 h and received 100 μg/kg physostigmine or 200 μg/kg donepezil intraperitoneally. Sex-matched littermates kept in room air and injected with normal saline, physostigmine or donepezil served as controls. Treatment with both inhibitors significantly reduced hyperoxia-triggered activity of AChE, neural cell death and the upregulation of the proinflammatory cytokines IL-1β and TNF-α in the immature rat brain on the mRNA and protein level. In parallel, hyperoxia-induced oxidative stress was reduced by concomitant physostigmine and donepezil administration, as shown by an increased reduced/oxidized glutathione ratio and attenuated malondialdehyde levels, as a sign of lipid peroxidation. Our results suggest that a single treatment with AChE inhibitors at the beginning of hyperoxia attenuated the detrimental effects of oxygen toxicity in the developing brain and may pave the way for AChE inhibitors, which are currently used for the treatment of Alzheimer's disease, as potential candidates for adjunctive neuroprotective therapies to the immature brain.
Collapse
Affiliation(s)
- Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Layer PG, Klaczinski J, Salfelder A, Sperling LE, Thangaraj G, Tuschl C, Vogel-Höpker A. Cholinesterases in development: AChE as a firewall to inhibit cell proliferation and support differentiation. Chem Biol Interact 2012; 203:269-76. [PMID: 23047026 DOI: 10.1016/j.cbi.2012.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Acetylcholinesterase (AChE) is a most remarkable protein, not only because it is one of the fastest enzymes in nature, but also since it appears in many molecular forms and is regulated by elaborate genetic networks. AChE is expressed in many tissues during development and in mature organisms, as well as in healthy and diseased states. In search for alternative, "non-classical" functions of cholinesterases (ChEs), AChE could either work within the frame of classic cholinergic systems, but in non-neural tissues ("non-synaptic function"), or act non-enzymatically. Here, we review briefly some of the major ideas and advances of this field, and report on some recent progress from our own experimental work, e.g. that (i) non-neural ChEs have pronounced, predominantly enzymatic effects on early embryonic (limb) development in chick and mouse, that (ii) retinal R28 cells of the rat overexpressing synaptic AChE present a significantly decreased cell proliferation, and that (iii) in developing chick retina ACh-synthesizing and ACh-degrading cells originate from the same postmitotic precursor cells, which later form two locally opposing cell populations. We suggest that such distinct distributions of ChAT(+) vs. AChE(+) cells in the inner half retina provide graded distributions of ACh, which can direct cell differentiation and network formation. Thus, as corroborated by works from many labs, AChE can be considered a highly co-opting protein, which can combine enzymatic and non-enzymatic functions within one molecule.
Collapse
Affiliation(s)
- Paul G Layer
- Technische Universität Darmstadt, Entwicklungsbiologie & Neurogenetik, Darmstadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang XJ, Greenberg DS. Acetylcholinesterase involvement in apoptosis. Front Mol Neurosci 2012; 5:40. [PMID: 22514517 PMCID: PMC3322359 DOI: 10.3389/fnmol.2012.00040] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/18/2012] [Indexed: 01/22/2023] Open
Abstract
To date, more than 40 different types of cells from primary cultures or cell lines have shown AChE expression during apoptosis and after the induction apoptosis by different stimuli. It has been well-established that increased AChE expression or activity is detected in apoptotic cells after apoptotic stimuli in vitro and in vivo, and AChE could be therefore used as a marker of apoptosis. AChE is not an apoptosis initiator, but the cells in which AChE is overexpressed undergo apoptosis more easily than controls. Interestingly, cells with downregulated levels of AChE are not sensitive to apoptosis induction and AChE deficiency can protect against apoptosis. Some tumor cells do not express AChE, but when AChE is introduced into a tumor cell, the cells cease to proliferate and undergo apoptosis more readily. Therefore, AChE can be classified as a tumor suppressor gene. AChE plays a pivotal role in apoptosome formation, and silencing of the AChE gene prevents caspase-9 activation, with consequent decreased cell viability, nuclear condensation, and poly (adenosine diphosphate-ribose) polymerase cleavage. AChE is translocated into the nucleus, which may be an important event during apoptosis. Several questions still need to be addressed, and further studies that address the non-classical function of AChE in apoptosis are needed.
Collapse
Affiliation(s)
- Xue-Jun Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | | |
Collapse
|
14
|
Johnson M, Ekonomou A, Hobbs C, Ballard CG, Perry RH, Perry EK. Neurogenic marker abnormalities in the hippocampus in dementia with Lewy bodies. Hippocampus 2011; 21:1126-36. [PMID: 20665591 DOI: 10.1002/hipo.20826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2010] [Indexed: 12/20/2022]
Abstract
Dementia with Lewy bodies (DLB) is associated with alpha synuclein pathology and slowly progressive dementia. Progenitor abnormalities have previously been reported in the subventricular zone (SVZ) adjacent to the lateral ventricle. To evaluate changes in neural stem cells and progenitors in the hippocampal neurogenic niche, immunohistochemistry (IHC) using the neural stem cell markers Musashi 1, nestin, proliferating cell nuclear antigen (PCNA), doublecortin, and glial fibrillary acidic protein (GFAP) were examined in age-matched control and DLB groups. Staining was quantified in the hippocampal SVZ, subgranular layer (SGL) and ependymal cell layer (EPL). There was a significant loss in DLB of Musashi 1 (P < 0.01) in all areas, an increase in PCNA in hippocampal SVZ (P = 0.01) and SGL (P = 0.05), and an increase in doublecortin in the hippocampal SVZ (P = 0.04) and EPL (P = 0.02). This is the first report of the changes in neurogenic markers in the hippocampal SVZ and EPL in DLB and may offer the potential for understanding disease pathology and in the devising of treatment.
Collapse
Affiliation(s)
- Mary Johnson
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| | | | | | | | | | | |
Collapse
|
15
|
Veena J, Srikumar BN, Mahati K, Raju TR, Shankaranarayana Rao BS. Oxotremorine treatment restores hippocampal neurogenesis and ameliorates depression-like behaviour in chronically stressed rats. Psychopharmacology (Berl) 2011; 217:239-53. [PMID: 21494789 DOI: 10.1007/s00213-011-2279-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
RATIONALE Chronic stress results in cognitive impairment, affects hippocampal neurogenesis and is known to precipitate affective disorders such as depression. In addition to stress, neurotransmitters such as acetylcholine (ACh) modulate adult neurogenesis. Earlier, we have shown that oxotremorine, a cholinergic muscarinic agonist, ameliorates stress-induced cognitive impairment and restores cholinergic function. OBJECTIVES In the current study, we have looked into the possible involvement of adult neurogenesis in cognitive restoration by oxotremorine. Further, we have assessed the effect of oxotremorine treatment on depression-like behaviour and hippocampal volumes in stressed animals. METHODS Chronic restraint stressed rats were treated with either vehicle or oxotremorine. For neurogenesis studies, proliferation, survival and differentiation of the progenitor cells in the hippocampus were examined using 5'-bromo-2-deoxyuridine immunohistochemistry. Depression-like behaviour was evaluated using forced swim test (FST) and sucrose consumption test (SCT). Volumes were estimated using Cavalieri's estimator. RESULTS Hippocampal neurogenesis was severely decreased in stressed rats. Ten days of oxotremorine treatment to stressed animals partially restored proliferation and survival, while it completely restored the differentiation of the newly formed cells. Stressed rats showed increased immobility and decreased sucrose preference in the FST and SCT, respectively, and oxotremorine ameliorated this depression-like behaviour. In addition, oxotremorine treatment recovered the stress-induced decrease in hippocampal volume. CONCLUSIONS These results indicate that the restoration of impaired neurogenesis and hippocampal volume could be associated with the behavioural recovery by oxotremorine. Our results imply the muscarinic regulation of adult neurogenesis and incite the potential utility of cholinomimetics in ameliorating cognitive dysfunction in stress-related disorders.
Collapse
Affiliation(s)
- J Veena
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, PB # 2900, Bangalore, 560 029, India
| | | | | | | | | |
Collapse
|
16
|
Dagytė G, Den Boer JA, Trentani A. The cholinergic system and depression. Behav Brain Res 2011; 221:574-82. [PMID: 20170685 DOI: 10.1016/j.bbr.2010.02.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/10/2010] [Indexed: 01/07/2023]
|
17
|
|
18
|
Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res 2011; 221:379-88. [PMID: 21272598 DOI: 10.1016/j.bbr.2011.01.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
Abstract
In this review, we focus on immature neurons and their regulation by the cholinergic system, both during cortical development as well as during adult neurogenesis. We discuss various studies that indicate roles for acetylcholine in precursor development and neuronal differentiation. Cholinergic neurons projecting from the basal forebrain innervate the cerebral cortex during critical periods of neuronal development. Acetylcholine stimulation may help to promote a favourable environment for neuronal maturation. Afferents and their cortical target cells interact and are likely to influence each other during the establishment and refinement of connections. Intracortical cholinergic interneurons similarly have a local effect on cortical circuits. Reduced cholinergic innervation during development hence leads to reduced cortical thickness and dendritic abnormalities. Acetylcholine is also likely to play a critical role in neuronal plasticity, as shown in the visual and barrel cortices. Spontaneous nicotinic excitation is also important during a brief developmental window in the first postnatal weeks leading to waves of neural activity, likely to have an effect on neurite extension, target selection and synaptogenesis. In the hippocampus such activity plays a role in the maturation of GABAergic synapses during the developmental shift from depolarizing to hyperpolarizing transmission. The cholinergic system also seems likely to regulate hippocampal neurogenesis in the adult, positively promoting proliferation, differentiation, integration and potentially survival of newborn neurons.
Collapse
|
19
|
Damodaran TV, Gupta RP, Attia MK, B. Abou-Donia M. DFP initiated early alterations of PKA/p-CREB pathway and differential persistence of β-tubulin subtypes in the CNS of hens contributes to OPIDN. Toxicol Appl Pharmacol 2009; 240:132-42. [DOI: 10.1016/j.taap.2009.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|
20
|
Ho NF, Han SP, Dawe GS. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice. BMC Neurosci 2009; 10:57. [PMID: 19500352 PMCID: PMC2711090 DOI: 10.1186/1471-2202-10-57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/05/2009] [Indexed: 11/10/2022] Open
Abstract
Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.
Collapse
Affiliation(s)
- New Fei Ho
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences (CeLS), Level 4, 28 Medical Drive, 117456, Singapore.
| | | | | |
Collapse
|