1
|
Lehmann H, Stykel MG, Glenn MJ. Overtraining Strengthens the Visual Discrimination Memory Trace Outside the Hippocampus in Male Rats. Front Behav Neurosci 2021; 15:768552. [PMID: 34867230 PMCID: PMC8634582 DOI: 10.3389/fnbeh.2021.768552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The hippocampus (HPC) may compete with other memory systems when establishing a representation, a process termed overshadowing. However, this overshadowing may be mitigated by repeated learning episodes, making a memory resistant to post-training hippocampal damage. In the current study, we examined this overshadowing process for a hippocampal-dependent visual discrimination memory in rats. In Experiment 1, male rats were trained to criterion (80% accuracy on two consecutive days) on a visual discrimination and then given 50 additional trials distributed over 5 days or 10 weeks. Regardless of this additional learning, extensive damage to the HPC caused retrograde amnesia for the visual discrimination, suggesting that the memory remained hippocampal-dependent. In Experiment 2, rats received hippocampal damage before learning and required approximately twice as many trials to acquire the visual discrimination as control rats, suggesting that, when the overshadowing or competition is removed, the non-hippocampal memory systems only slowly acquires the discrimination. In Experiment 3, increasing the additional learning beyond criterion by 230 trials, the amount needed in Experiment 2 to train the non-hippocampal systems in absence of competition, successfully prevented the retrograde amnesic effects of post-training hippocampal damage. Combined, the findings suggest that a visual discrimination memory trace can be strengthened in non-hippocampal systems with overtraining and become independent of the HPC.
Collapse
Affiliation(s)
- Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Morgan G. Stykel
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Melissa J. Glenn
- Department of Psychology, Colby College, Waterville, MA, United States
| |
Collapse
|
2
|
Hales JB, Reitz NT, Vincze JL, Ocampo AC, Leutgeb S, Clark RE. A role for medial entorhinal cortex in spatial and nonspatial forms of memory in rats. Behav Brain Res 2021; 407:113259. [PMID: 33775779 PMCID: PMC8143915 DOI: 10.1016/j.bbr.2021.113259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Many studies have focused on the role of the medial entorhinal cortex (MEC) in spatial memory and spatial processing. However, more recently, studies have suggested that the functions of the MEC may extend beyond the spatial domain and into the temporal aspects of memory processing. The current study examined the effect of MEC lesions on spatial and nonspatial tasks that require rats to learn and remember information about location or stimulus-stimulus associations across short temporal gaps. MEC- and sham-lesioned male rats were tested on a watermaze delayed match to position (DMP) task and trace fear conditioning (TFC). Rats with MEC lesions were impaired at remembering the platform location after both the shortest (1 min) and the longest (6 h) delays on the DMP task, never performing as precisely as sham rats under the easiest condition and performing poorly at the longest delay. On the TFC task, although MEC-lesioned rats were not impaired at remembering the conditioning context, they showed reduced freezing in response to the previously associated tone. These findings suggest that the MEC plays a role in bridging temporal delays during learning and memory that extend beyond its established role in spatial memory processing.
Collapse
Affiliation(s)
- Jena B Hales
- Department of Psychological Sciences, University of San Diego, San Diego, CA, 92110, USA.
| | - Nicole T Reitz
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Jonathan L Vincze
- Marian College of Osteopathic Medicine, Indianapolis, IN, 46222, USA
| | - Amber C Ocampo
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert E Clark
- Department of Psychiatry 0603, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Burke CJ, Whishaw IQ. Sniff, look and loop excursions as the unit of “exploration” in the horse (Equus ferus caballis) when free or under saddle in an equestrian arena. Behav Processes 2020; 173:104065. [DOI: 10.1016/j.beproc.2020.104065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
|
4
|
Lee JQ, LeDuke DO, Chua K, McDonald RJ, Sutherland RJ. Relocating cued goals induces population remapping in CA1 related to memory performance in a two-platform water task in rats. Hippocampus 2018; 28:431-440. [DOI: 10.1002/hipo.22843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Justin Quinn Lee
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| | - Deryn O. LeDuke
- Quest University Canada, 3200 University Drive; Squamish British Columbia, V8B 0N8 Canada
| | - Kate Chua
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| | - Robert J. McDonald
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| | - Robert J. Sutherland
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| |
Collapse
|
5
|
Thompson SM, Berkowitz LE, Clark BJ. Behavioral and Neural Subsystems of Rodent Exploration. LEARNING AND MOTIVATION 2018; 61:3-15. [PMID: 30270939 PMCID: PMC6159932 DOI: 10.1016/j.lmot.2017.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animals occupy territories in which resources such as food and shelter are often distributed unevenly. While studies of exploratory behavior have typically involved the laboratory rodent as an experimental subject, questions regarding what constitutes exploration have dominated. A recent line of research has utilized a descriptive approach to the study of rodent exploration, which has revealed that this behavior is organized into movement subsystems that can be readily quantified. The movements include home base behavior, which serves as a central point of attraction from which rats and mice organize exploratory trips into the remaining environment. In this review, we describe some of the features of this organized behavior pattern as well as its modulation by sensory cues and previous experience. We conclude the review by summarizing research investigating the neurobiological bases of exploration, which we hope will stimulate renewed interest and research on the neural systems mediating rodent exploratory behavior.
Collapse
Affiliation(s)
| | - Laura E. Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Benjamin J. Clark
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
6
|
Lee JQ, Sutherland RJ, McDonald RJ. Hippocampal damage causes retrograde but not anterograde memory loss for context fear discrimination in rats. Hippocampus 2017; 27:951-958. [PMID: 28686806 DOI: 10.1002/hipo.22759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/06/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Abstract
There is a substantial body of evidence that the hippocampus (HPC) plays and essential role in context discrimination in rodents. Studies reporting anterograde amnesia (AA) used repeated, alternating, distributed conditioning and extinction sessions to measure context fear discrimination. In addition, there is uncertainty about the extent of damage to the HPC. Here, we induced conditioned fear prior to discrimination tests and rats sustained extensive, quantified pre- or post-training HPC damage. Unlike previous work, we found that extensive HPC damage spares context discrimination, we observed no AA. There must be a non-HPC system that can acquire long-term memories that support context fear discrimination. Post-training HPC damage caused retrograde amnesia (RA) for context discrimination, even when rats are fear conditioned for multiple sessions. We discuss the implications of these findings for understanding the role of HPC in long-term memory.
Collapse
Affiliation(s)
- Justin Q Lee
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | - Robert J McDonald
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| |
Collapse
|
7
|
Lee JQ, Zelinski EL, McDonald RJ, Sutherland RJ. Heterarchic reinstatement of long-term memory: A concept on hippocampal amnesia in rodent memory research. Neurosci Biobehav Rev 2016; 71:154-166. [DOI: 10.1016/j.neubiorev.2016.08.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 11/27/2022]
|
8
|
Ramos JM. Differential contribution of perirhinal cortex and hippocampus to taste neophobia: Effect of neurotoxic lesions. Behav Brain Res 2015; 284:94-102. [DOI: 10.1016/j.bbr.2015.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/10/2023]
|
9
|
Fiebig F, Lansner A. Memory consolidation from seconds to weeks: a three-stage neural network model with autonomous reinstatement dynamics. Front Comput Neurosci 2014; 8:64. [PMID: 25071536 PMCID: PMC4077014 DOI: 10.3389/fncom.2014.00064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/24/2014] [Indexed: 11/29/2022] Open
Abstract
Declarative long-term memories are not created in an instant. Gradual stabilization and temporally shifting dependence of acquired declarative memories in different brain regions-called systems consolidation-can be tracked in time by lesion experiments. The observation of temporally graded retrograde amnesia (RA) following hippocampal lesions points to a gradual transfer of memory from hippocampus to neocortical long-term memory. Spontaneous reactivations of hippocampal memories, as observed in place cell reactivations during slow-wave-sleep, are supposed to drive neocortical reinstatements and facilitate this process. We propose a functional neural network implementation of these ideas and furthermore suggest an extended three-state framework that includes the prefrontal cortex (PFC). It bridges the temporal chasm between working memory percepts on the scale of seconds and consolidated long-term memory on the scale of weeks or months. We show that our three-stage model can autonomously produce the necessary stochastic reactivation dynamics for successful episodic memory consolidation. The resulting learning system is shown to exhibit classical memory effects seen in experimental studies, such as retrograde and anterograde amnesia (AA) after simulated hippocampal lesioning; furthermore the model reproduces peculiar biological findings on memory modulation, such as retrograde facilitation of memory after suppressed acquisition of new long-term memories-similar to the effects of benzodiazepines on memory.
Collapse
Affiliation(s)
- Florian Fiebig
- Department of Computational Biology, Royal Institute of Technology (KTH)Stockholm, Sweden
- Institute for Adaptive and Neural Computation, School of Informatics, Edinburgh UniversityEdinburgh, Scotland
| | - Anders Lansner
- Department of Computational Biology, Royal Institute of Technology (KTH)Stockholm, Sweden
- Department of Numerical Analysis and Computer Science, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
10
|
Ramos JMJ. Profound retrograde but absence of anterograde amnesia for cued place learning in rats with hippocampal lesions. Behav Brain Res 2012; 236:102-109. [PMID: 22944137 DOI: 10.1016/j.bbr.2012.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022]
Abstract
Previous studies in our lab have shown that slight modifications in the spatial reference memory procedure can overcome the deficit in spatial learning typically observed in rats with hippocampal damage. However, it is unknown if memory acquired under such training circumstances is spared after hippocampal lesions. With this aim a four-arm plus-shaped maze and a spatial reference memory paradigm were used, in which the goal arm was doubly marked: by an intramaze cue (a piece of sandpaper positioned on the floor of the arm) and by the extramaze constellation of stimuli around the maze. Experiment 1 replicated previous findings showing that hippocampally damaged rats can learn a place response just as well as the controls when the intramaze cue is present during the training, but they are unable to do so in the absence of the intramaze signal. When the learning procedure was doubly signaled, a transfer test performed 24h after the end of acquisition demonstrated that lesioned rats showed perfect memory for the goal arm when the intramaze cue was removed. Experiment 2 investigated the effect of hippocampal damage 1 day after the learning. Results showed that regardless of the training procedure employed (with or without the intramaze cue), hippocampal lesions produced a profound retrograde amnesia. Thus, although the absence of anterograde amnesia suggests that structures other that the hippocampus can take charge of the acquisition, the presence of retrograde amnesia indicates the critical role of the normal hippocampus in the long-term formation of allocentric information.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology, Campus Cartuja, University of Granada, Granada 18071, Spain.
| |
Collapse
|
11
|
Sparks FT, Lehmann H, Sutherland RJ. Between-systems memory interference during retrieval. Eur J Neurosci 2011; 34:780-6. [DOI: 10.1111/j.1460-9568.2011.07796.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Sutherland RJ, Sparks FT, Lehmann H. Hippocampus and retrograde amnesia in the rat model: a modest proposal for the situation of systems consolidation. Neuropsychologia 2010; 48:2357-69. [PMID: 20430043 PMCID: PMC2900526 DOI: 10.1016/j.neuropsychologia.2010.04.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/19/2010] [Indexed: 12/12/2022]
Abstract
The properties of retrograde amnesia after damage to the hippocampus have been explicated with some success using a rat model of human medial temporal lobe amnesia. We review the results of this experimental work with rats focusing on several areas of consensus in this growing literature. We evaluate the theoretically significant hypothesis that hippocampal retrograde amnesia normally exhibits a temporal gradient, affecting recent, but sparing remote memories. Surprisingly, the evidence does not provide much support for the idea that there is a lengthy process of systems consolidation following a learning episode. Instead, recent and remote memories tend to be equally affected. The extent of damage to the hippocampus is a significant factor in this work since it is likely that spared hippocampal tissue can support at least partial memory retrieval. With extensive hippocampal damage gradients are flat or, in the case of memory tasks with flavour/odour retrieval cues, the retrograde amnesia covers a period of about 1-3 days. There is consistent evidence that at the time of learning the hippocampus interferes with or overshadows memory acquisition by other systems. This contributes to the breadth and severity of retrograde amnesia relative to anterograde amnesia in the rat. The fact that multiple, distributed learning episodes can overcome this overshadowing is consistent with a parallel dual-store theory or a Distributed Reinstatement Theory in which each learning episode triggers a short period of memory replay that provides a brief hippocampal-dependent systems consolidation.
Collapse
Affiliation(s)
- Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada.
| | | | | |
Collapse
|