1
|
Piromalli Girado D, Miranda M, Giachero M, Weisstaub N, Bekinschtein P. Endocytosis is required for consolidation of pattern-separated memories in the perirhinal cortex. Front Syst Neurosci 2023; 17:1043664. [PMID: 36911226 PMCID: PMC9995888 DOI: 10.3389/fnsys.2023.1043664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The ability to separate similar experiences into differentiated representations is proposed to be based on a computational process called pattern separation, and it is one of the key characteristics of episodic memory. Although pattern separation has been mainly studied in the dentate gyrus of the hippocampus, this cognitive function if thought to take place also in other regions of the brain. The perirhinal cortex is important for the acquisition and storage of object memories, and in particular for object memory differentiation. The present study was devoted to investigating the importance of the cellular mechanism of endocytosis for object memory differentiation in the perirhinal cortex and its association with brain-derived neurotrophic factor, which was previously shown to be critical for the pattern separation mechanism in this structure. Methods We used a modified version of the object recognition memory task and intracerebral delivery of a peptide (Tat-P4) into the perirhinal cortex to block endocytosis. Results We found that endocytosis is necessary for pattern separation in the perirhinal cortex. We also provide evidence from a molecular disconnection experiment that BDNF and endocytosis-related mechanisms interact for memory discrimination in both male and female rats. Discussion Our experiments suggest that BDNF and endocytosis are essential for consolidation of separate object memories and a part of a time-restricted, protein synthesis-dependent mechanism of memory stabilization in Prh during storage of object representations.
Collapse
Affiliation(s)
- Dinka Piromalli Girado
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Marcelo Giachero
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Noelia Weisstaub
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| |
Collapse
|
2
|
Cui YH, Zhou SF, Liu Y, Wang S, Li F, Dai RP, Hu ZL, Li CQ. Injection of Anti-proBDNF Attenuates Hippocampal-Dependent Learning and Memory Dysfunction in Mice With Sepsis-Associated Encephalopathy. Front Neurosci 2021; 15:665757. [PMID: 34354558 PMCID: PMC8329425 DOI: 10.3389/fnins.2021.665757] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a risk factor for cognitive and memory dysfunction; however, the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) was reported to have a positive effect on cognition and emotion regulation, but the study of its precursor, proBDNF, has been limited. This study aimed to elucidate the effects and associated mechanisms of hippocampal proBDNF in a lipopolysaccharide (LPS)-induced SAE mouse model. In this study, we found that the mice exhibited cognitive dysfunction on day 7 after LPS injection. The expression of proBDNF and its receptor, p75NTR, was also increased in the hippocampus, while the levels of BDNF and its receptor, TrkB, were decreased. A co-localization study showed that proBDNF and p75NTR were mainly co-localized with neurons. Furthermore, LPS treatment reduced the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, and NR2B in the hippocampus of SAE mice. Furthermore, an intrahippocampal or intraperitoneal injection of anti-proBDNF antibody was able to ameliorate LPS-induced cognitive dysfunction and restore the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, NR2B, and PSD95. These results indicated that treatment with brain delivery by an intrahippocampal and systemic injection of mAb-proBDNF may represent a potential therapeutic strategy for treating patients with SAE.
Collapse
Affiliation(s)
- Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Wang
- Department of Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
3
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
4
|
Khatib TZ, Osborne A, Yang S, Ali Z, Jia W, Manyakin I, Hall K, Watt R, Widdowson PS, Martin KR. Receptor-ligand supplementation via a self-cleaving 2A peptide-based gene therapy promotes CNS axonal transport with functional recovery. SCIENCE ADVANCES 2021; 7:eabd2590. [PMID: 33789891 PMCID: PMC8011959 DOI: 10.1126/sciadv.abd2590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Gene replacement approaches are leading to a revolution in the treatment of previously debilitating monogenic neurological conditions. However, the application of gene therapy to complex polygenic conditions has been limited. Down-regulation or dysfunction of receptor expression in the disease state or in the presence of excess ligand has been shown to compromise therapeutic efficacy. Here, we offer evidence that combined overexpression of both brain-derived neurotrophic factor and its receptor, tropomyosin receptor kinase B, is more effective in stimulating axonal transport than either receptor administration or ligand administration alone. We also show efficacy in experimental glaucoma and humanized tauopathy models. Simultaneous administration of a ligand and its receptor by a single gene therapy vector overcomes several problems relating to ligand deficiency and receptor down-regulation that may be relevant to multiple neurodegenerative diseases. This approach shows promise as a strategy to target intrinsic mechanisms to improve neuronal function and facilitate repair.
Collapse
Affiliation(s)
- Tasneem Z Khatib
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Quethera Ltd., Cambridge, UK
- Ikarovec Ltd., Norwich Innovation Centre, Norwich, UK
| | - Sujeong Yang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zara Ali
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Wanyi Jia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ilya Manyakin
- Department of Physics, University of Cambridge, Cambridge, UK
| | - Katie Hall
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robert Watt
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter S Widdowson
- Quethera Ltd., Cambridge, UK
- Ikarovec Ltd., Norwich Innovation Centre, Norwich, UK
| | - Keith R Martin
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Eye Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Quethera Ltd., Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
5
|
Repeated cocaine exposure during adolescence impairs recognition memory in early adulthood: A role for BDNF signaling in the perirhinal cortex. Dev Cogn Neurosci 2020; 43:100789. [PMID: 32510348 PMCID: PMC7200858 DOI: 10.1016/j.dcn.2020.100789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
The perirhinal cortex (PrhC) is critical for object recognition memory; however, information regarding the molecular mechanisms underlying this type of memory following repeated exposure to drugs of abuse during adolescence is unknown. To this end, adolescent or adult rats were exposed to cocaine from postnatal day (PND) 28 to PND 42 or PND 63 to PND 77, respectively. Two weeks later, rats were subjected to the cognitive test named Novel Object Recognition (NOR) test. We found that adolescent, but not adult, cocaine exposure caused a significant impairment in the NOR test, independently from changes in the stress response system. In adolescent saline-treated rats, NOR test up-regulated BDNF and its downstream signaling whereas a downregulation of the same pathway was observed in cocaine-treated rats together with a reduction of Arc/Arg3.1 and PSD95 expression, indicating reduced pro-cognitive structural adaptations in the PrhC. Of note, cocaine-treated adult rats correctly performed in the NOR test indicating intact recognition memory mechanisms, despite a significant cocaine-induced reduction of BDNF levels in the PrhC, suggesting that recognition memory is heavily dependent on BDNF during adolescence whereas during adulthood other mechanisms come into play.
Collapse
|
6
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci 2020; 14:68. [PMID: 32317935 PMCID: PMC7146617 DOI: 10.3389/fncel.2020.00068] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening neurological disease characterized by high mortality and morbidity. Various pathophysiological responses are initiated after blood enters the interstitial space of the brain, compressing the brain tissue and thus causing cell death. Recently, three new programmed cell deaths (PCDs), necroptosis, pyroptosis, and ferroptosis, were also found to be important contributors in the pathophysiology of hemorrhagic stroke. Additionally, blood-brain barrier (BBB) dysfunction plays a crucial role in the pathophysiology of hemorrhagic stroke. The primary insult following BBB dysfunction may disrupt the tight junctions (TJs), transporters, transcytosis, and leukocyte adhesion molecule expression, which may lead to brain edema, ionic homeostasis disruption, altered signaling, and immune infiltration, consequently causing neuronal cell death. This review article summarizes recent advances in our knowledge of the mechanisms regarding these new PCDs and reviews their contributions in hemorrhagic stroke and potential crosstalk in BBB dysfunction. Numerous studies revealed that necroptosis, pyroptosis, and ferroptosis participate in cell death after subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Endothelial dysfunction caused by these three PCDs may be the critical factor during BBB damage. Also, several signaling pathways were involved in PCDs and BBB dysfunction. These new PCDs (necroptosis, pyroptosis, ferroptosis), as well as BBB dysfunction, each play a critical role after hemorrhagic stroke. A better understanding of the interrelationship among them might provide us with better therapeutic targets for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 832] [Impact Index Per Article: 138.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
8
|
Yang C, Li T, Xue H, Wang L, Deng L, Xie Y, Bai X, Xin D, Yuan H, Qiu J, Wang Z, Li G. Inhibition of Necroptosis Rescues SAH-Induced Synaptic Impairments in Hippocampus via CREB-BDNF Pathway. Front Neurosci 2019; 12:990. [PMID: 30666179 PMCID: PMC6330293 DOI: 10.3389/fnins.2018.00990] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating form of stroke that leads to incurable outcomes. Increasing evidence has proved that early brain injury (EBI) contributes mostly to unfavorable outcomes after SAH. A previously unknown mechanism of regulated cell death known as necroptosis has recently been reported. Necrostatin-1 (nec-1), a specific and potent inhibitor of necroptosis, can attenuate brain impairments after SAH. However, the effect of nec-1 on the hippocampus and its neuroprotective impact on synapses after SAH is not well understood. Our present study was designed to investigate the potential effects of nec-1 administration on synapses and its relevant signal pathway in EBI after SAH. Nec-1 was administrated in a rat model via intracerebroventricular injection after SAH. Neurobehavior scores and brain edema were detected at 24 h after SAH occurred. The expression of the receptor-interacting proteins 1 and 3 (RIP1and3) was examined as a marker of necroptosis. We used hematoxylin and eosin staining, Nissl staining, silver staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to observe the morphological changes in hippocampus. The protective effect of nec-1 on synapses was evaluated using western blotting and electron microscopy and Western blotting was used to detect the cAMP responsive element binding (CREB) protein and brain-derived neurotrophic factor (BDNF), and we used transmission electron microscopy and TUNEL to detect the protective effects of nec-1 when a specific inhibitor of CREB, known as 666-15, was used. Our results showed that in the SAH group, RIP1, and RIP3 significantly increased in the hippocampus. Additionally, injection of nec-1 alleviated brain edema and improved neurobehavior scores, compared with those in the SAH group. The damage to neurons was attenuated, and synaptic structure also improved in the Sham+nec-1 group. Furthermore, nec-1 treatment significantly enhanced the levels of phospho-CREB and BDNF compared with those in the SAH group. The protective effect of nec-1 could hindered by 666-15. Thus, nec-1 mitigated SAH-induced synaptic impairments in the hippocampus through the inhibition of necroptosis in connection with the CREB-BDNF pathway. This study may provide a new strategy for SAH patients in clinical practice.
Collapse
Affiliation(s)
- Chunlei Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Tong Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Lingxiao Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yunkai Xie
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Hongtao Yuan
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Jie Qiu
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
9
|
Beneficial Effects of Gagam-Palmultang on Scopolamine-Induced Memory Deficits in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3479083. [PMID: 29670659 PMCID: PMC5835292 DOI: 10.1155/2018/3479083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/28/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
From text mining of Dongeuibogam, the 7 herbs in Palmultang can be considered effective candidates for memory enhancement. We sought to determine whether Gagam-Palmultang, comprising these 7 herbs, ameliorates scopolamine-induced memory impairment in mice, by focusing on the central cholinergic system and memory-related signaling molecules. Behavioral tests were performed after inducing memory impairment by scopolamine administration. The cholinergic system activity and memory-related molecules were examined in the hippocampus by enzyme-linked immunosorbent, western blot, and immunofluorescence assays. Gagam-Palmultang ameliorated scopolamine-induced memory impairment in the Morris water maze test, producing a significant improvement in the mean time required to find the hidden platform. Treatment with Gagam-Palmultang reduced acetylcholinesterase activity and expression in the hippocampus induced by scopolamine. The diminished phosphorylated phosphatidylinositide 3-kinase (PI3K), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), and mature brain-derived neurotrophic factor (mBDNF) expressions caused by scopolamine administration were attenuated by treatment with Gagam-Palmultang. This treatment also promoted neuronal cell proliferation in the hippocampus. Gagam-Palmultang has beneficial effects against scopolamine-induced memory impairments, which are exerted via modulation of the cholinergic system as well as the PI3K and ERK/CREB/BDNF signaling pathway. Therefore, this multiherb formula may be a useful therapeutic agent for diseases associated with memory impairments.
Collapse
|
10
|
Miranda M, Bekinschtein P. Plasticity Mechanisms of Memory Consolidation and Reconsolidation in the Perirhinal Cortex. Neuroscience 2018; 370:46-61. [DOI: 10.1016/j.neuroscience.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
|
11
|
The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults. Neural Plast 2016; 2016:6860573. [PMID: 27437149 PMCID: PMC4942640 DOI: 10.1155/2016/6860573] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/28/2016] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans.
Collapse
|
12
|
Psotta L, Rockahr C, Gruss M, Kirches E, Braun K, Lessmann V, Bock J, Endres T. Impact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model. Front Behav Neurosci 2015; 9:58. [PMID: 25852506 PMCID: PMC4367180 DOI: 10.3389/fnbeh.2015.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/18/2015] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that brain-derived neurotrophic factor (BDNF) plays a crucial role in Alzheimer’s disease (AD) pathology. A number of studies demonstrated that AD patients exhibit reduced BDNF levels in the brain and the blood serum, and in addition, several animal-based studies indicated a potential protective effect of BDNF against Aβ-induced neurotoxicity. In order to further investigate the role of BDNF in the etiology of AD, we created a novel mouse model by crossing a well-established AD mouse model (APP/PS1) with a mouse exhibiting a chronic BDNF deficiency (BDNF+/−). This new triple transgenic mouse model enabled us to further analyze the role of BDNF in AD in vivo. We reasoned that in case BDNF has a protective effect against AD pathology, an AD-like phenotype in our new mouse model should occur earlier and/or in more severity than in the APP/PS1-mice. Indeed, the behavioral analysis revealed that the APP/PS1-BDNF+/−-mice show an earlier onset of learning impairments in a two-way active avoidance task in comparison to APP/PS1- and BDNF+/−-mice. However in the Morris water maze (MWM) test, we could not observe an overall aggrevated impairment in spatial learning and also short-term memory in an object recognition task remained intact in all tested mouse lines. In addition to the behavioral experiments, we analyzed the amyloid plaque pathology in the APP/PS1 and APP/PS1-BDNF+/−-mice and observed a comparable plaque density in the two genotypes. Moreover, our results revealed a higher plaque density in prefrontal cortical compared to hippocampal brain regions. Our data reveal that higher cognitive tasks requiring the recruitment of cortical networks appear to be more severely affected in our new mouse model than learning tasks requiring mainly sub-cortical networks. Furthermore, our observations of an accelerated impairment in active avoidance learning in APP/PS1-BDNF+/−-mice further supports the hypothesis that BDNF deficiency amplifies AD-related cognitive dysfunctions.
Collapse
Affiliation(s)
- Laura Psotta
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Carolin Rockahr
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Michael Gruss
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Elmar Kirches
- Institute of Neuropathology, Faculty of Medicine, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Thomas Endres
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| |
Collapse
|
13
|
Brain-derived neurotrophic factor heterozygous mutant rats show selective cognitive changes and vulnerability to chronic corticosterone treatment. Neuroscience 2015; 284:297-310. [DOI: 10.1016/j.neuroscience.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/11/2014] [Accepted: 10/08/2014] [Indexed: 01/08/2023]
|
14
|
Klug M, van den Buuse M. An investigation into "two hit" effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice. Front Behav Neurosci 2013; 7:149. [PMID: 24155701 PMCID: PMC3800788 DOI: 10.3389/fnbeh.2013.00149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/01/2013] [Indexed: 11/13/2022] Open
Abstract
Reduced brain-derived neurotrophic factor (BDNF) signaling has been shown in the frontal cortex and hippocampus in schizophrenia. The aim of the present study was to investigate whether a BDNF deficit would modulate effects of chronic cannabis intake, a well-described risk factor for schizophrenia development. BDNF heterozygous mice (HET) and wild-type controls were chronically treated during weeks 6, 7, and 8 of life with the cannabinoid receptor agonist, CP55,940 (CP). After a 2-week delay, there were no CP-induced deficits in any of the groups in short-term spatial memory in a Y-maze task or novel object recognition memory. Baseline prepulse inhibition (PPI) was lower but average startle was increased in BDNF HET compared to wild-type controls. Acute CP administration before the PPI session caused a marked increase in PPI in male HET mice pre-treated with CP but not in any of the other male groups. In females, there were small increases of PPI in all groups upon acute CP administration. Acute CP administration furthermore reduced startle and this effect was greater in HET mice irrespective of chronic CP pre-treatment. Analysis of the levels of [3H]CP55,940 binding by autoradiography revealed a significant increase in the nucleus accumbens of male BDNF HET mice previously treated with CP but not in any of the other groups or in the caudate nucleus. These results show that BDNF deficiency and chronic young-adult cannabinoid receptor stimulation do not interact in this model on learning and memory later in life. In contrast, male “two hit” mice, but not females, were hypersensitive to the effect of acute CP on sensorimotor gating. These effects may be related to a selective increase of [3H]CP55,940 binding in the nucleus accumbens, reflecting up-regulation of CB1 receptor density in this region. These data could be of relevance to our understanding of differential “two hit” neurodevelopmental mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Maren Klug
- Behavioural Neuroscience Laboratory, Mental Health Research Institute Melbourne, VIC, Australia ; Department of Psychology, Swinburne University of Technology Hawthorn, VIC, Australia
| | | |
Collapse
|
15
|
Callaghan CK, Kelly ÁM. Neurotrophins play differential roles in short and long-term recognition memory. Neurobiol Learn Mem 2013; 104:39-48. [DOI: 10.1016/j.nlm.2013.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/25/2022]
|
16
|
Chronic intracerebroventricular infusion of nerve growth factor improves recognition memory in the rat. Neuropharmacology 2013; 75:255-61. [PMID: 23932816 DOI: 10.1016/j.neuropharm.2013.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 02/02/2023]
Abstract
Nerve Growth Factor (NGF) plays pivotal roles in neuronal survival in the adult mammalian brain and may modulate forms of structural and functional plasticity, including neurogenesis. We have shown previously that six weeks of housing in an enriched environment (EE) that did not include access to running wheels resulted in improved recognition memory concomitant with increased NGF expression and neurogenesis in the hippocampus. Here we have attempted to probe a causal link between NGF and the observed enrichment-induced changes in hippocampal function by assessing the effects of six weeks continuous intracerebroventricular (i.c.v.) infusion of NGF on recognition memory and cell proliferation. We report that NGF-infused rats show enhanced recognition memory when compared with vehicle-treated controls. Expression of NGF and its receptor, TrkA, was increased in treated rats, as was expression of the synaptic vesicle protein, synapsin. Finally, we observed an increase in cell proliferation in the dentate gyrus of NGF-treated rats. These data indicate that chronic infusion of NGF can stimulate an improvement in learning and memory that is associated with specific cellular changes in the hippocampus, including synaptogenesis and cell proliferation.
Collapse
|
17
|
Banks PJ, Bashir ZI, Brown MW. Recognition memory and synaptic plasticity in the perirhinal and prefrontal cortices. Hippocampus 2013; 22:2012-31. [PMID: 22987679 DOI: 10.1002/hipo.22067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Work is reviewed that relates recognition memory to studies of synaptic plasticity mechanisms in perirhinal and prefrontal cortices. The aim is to consider evidence that perirhinal cortex and medial prefrontal cortex store rather than merely transmit information necessary for recognition memory and, if so, to consider what mechanisms are potentially available within these cortices for producing such storage through synaptic change. Interventions with known actions on plasticity mechanisms are reviewed in relation to their effects on recognition memory processes. These interventions importantly include those involving antagonism of glutamatergic and cholinergic receptors but also inhibition of plasticity consolidation and expression mechanisms. It is concluded that there is strong evidence that perirhinal cortex is involved in information storage necessary for object recognition memory and, moreover, that such storage involves synaptic weakening mechanisms including the removal of AMPA glutamate receptors from synapses. There is good evidence that medial prefrontal cortex is necessary for associative and temporal order recognition memory and that this cortex expresses plasticity mechanisms that potentially allow the storage of information. However, the case for medial prefrontal cortex acting as a store requires further support.
Collapse
|
18
|
Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology 2013; 76 Pt C:677-83. [PMID: 23688925 DOI: 10.1016/j.neuropharm.2013.04.024] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/14/2013] [Accepted: 04/08/2013] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor has emerged as one of the most important molecules involved in memory. Its wide role in different types of memories that depend on different structures as well as its involvement in distinct memory stages points at BDNF as one likely target to treat cognitive impairments and anxiety-related memory disorders. However, regulation of BDNF expression is very complex as well as its modes of action. Here we describe the latest research carried out on the function of BDNF in memory to illustrate such complexity. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Pedro Bekinschtein
- Instituto de Biologia Celular y Neurociencias, Facultad de Medicina, UBA, Argentina
| | | | | |
Collapse
|
19
|
What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory. Neuropsychologia 2012; 50:3122-40. [PMID: 22841990 PMCID: PMC3500694 DOI: 10.1016/j.neuropsychologia.2012.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/26/2012] [Accepted: 07/22/2012] [Indexed: 11/23/2022]
Abstract
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity).
Collapse
|
20
|
Callaghan CK, Kelly ÁM. Differential BDNF signaling in dentate gyrus and perirhinal cortex during consolidation of recognition memory in the rat. Hippocampus 2012; 22:2127-35. [PMID: 22573708 DOI: 10.1002/hipo.22033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2012] [Indexed: 01/16/2023]
Abstract
Consolidation of long-term memory is dependent on synthesis of new proteins in the hippocampus and associated cortical regions. The neurotrophin brain-derived neurotrophic factor (BDNF) is tightly regulated by activity-dependent cellular processes and is strongly linked with mechanisms underlying learning and memory. BDNF activation of tyrosine receptor kinase (TrkB) stimulates intracellular signaling cascades implicated in plasticity, including the extracellular-signal related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositide-3-kinase (PI3K)/Akt pathway. Here, we investigate the role of BDNF, ERK/MAPK, and PI3K/AKT signaling cascade in recognition memory in the rat. We report that recognition memory was associated with increased release of BDNF in the dentate gyrus and perirhinal cortex. This was associated with significant increases in p44ERK activation and c-fos expression in the dentate gyrus and PI3K activation and c-fos expression in the perirhinal cortex. Furthermore, both recognition memory and the associated cell signaling events in dentate gyrus and perirhinal cortex were blocked by intraperitoneal injection of the Trk receptor inhibitor tyrphostin AG879. These data are consistent with the hypothesis that BDNF-stimulated intracellular signaling plays a role in consolidation of recognition memory in the rat.
Collapse
Affiliation(s)
- Charlotte K Callaghan
- Department of Physiology, School of Medicine and Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | | |
Collapse
|
21
|
Seoane A, Tinsley CJ, Brown MW. Interfering with Fos expression in rat perirhinal cortex impairs recognition memory. Hippocampus 2012; 22:2101-13. [PMID: 22532480 DOI: 10.1002/hipo.22028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2012] [Indexed: 12/27/2022]
Abstract
Previous work has shown that immunohistochemical imaging of Fos protein is a reliable marker for changes in activity related to recognition memory in the perirhinal (PRH) cortex of the medial temporal lobe; however, whether PRH Fos expression is necessary for recognition memory had not been established. To investigate this potential requirement, antisense Fos oligodeoxynucleotide (ODN) was infused locally into PRH cortex to interfere with Fos production. As in previous studies, differential Fos expression produced by viewing novel or familiar visual stimuli was measured by immunohistochemistry: antisense Fos ODN infusion into PRH cortex disrupted the normal pattern of differential Fos expression in PRH cortex. The effect of antisense Fos ODN infusion into PRH cortex was therefore sought on recognition memory. Infusion before or immediately after acquisition impaired recognition memory for objects when the memory delay was 3 or 24 h, but not when the delay was 20 min, or when the ODN was infused before retrieval after a 24-h delay. The findings indicate a role for Fos in consolidation processes underlying long-term recognition memory for objects and establish that interfering with its expression impairs recognition memory. Antisense Fos ODN infusion also impaired object-in-place recognition memory. The results demonstrate that Fos is necessary for neuronal mechanisms in PRH cortex essential to recognition memory.
Collapse
Affiliation(s)
- Ana Seoane
- Department of Physiology and Pharmacology, Medical Research Council Centre for Synaptic Plasticity, University of Bristol, United Kingdom
| | | | | |
Collapse
|
22
|
Tinsley CJ, Fontaine-Palmer NS, Vincent M, Endean EPE, Aggleton JP, Brown MW, Warburton EC. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex. Learn Mem 2011; 18:484-92. [PMID: 21693636 DOI: 10.1101/lm.2274911] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.
Collapse
Affiliation(s)
- Chris J Tinsley
- MRC Centre for Synaptic Plasticity, School of Physiological Sciences, Bristol University, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|