1
|
Krajcovic B, Cernotova D, Buchtova H, Stuchlik A, Kubik S, Svoboda J. CA1 ensembles expressing immediate-early genes are driven by context switch, shrink with sustained presence, and show no effect of change of task demands. Behav Brain Res 2025; 480:115407. [PMID: 39710210 DOI: 10.1016/j.bbr.2024.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
The hippocampus (HPC) is essential for navigation and memory, tracking environmental continuity and change, including navigation relative to moving targets. CA1 ensembles expressing immediate-early gene (IEG) Arc and Homer1a RNA are contextually specific. While IEG expression correlates with HPC-dependent task demands, the effects of behavioral demands on IEG-expressing ensembles remain unclear. In three experiments, we investigated the effects of context switch, sustained presence, and task demands on dorso-proximal CA1 IEG+ ensembles in rats. Experiment 1 showed that the size of IEG+ (Arc, Homer1a RNA) ensembles dropped to baseline during uninterrupted 30-min exploration, reflecting familiarization, unless a context switch was present. Context-specificity of the ensembles depended on both environment identity and timing of the context switch. Experiment 2 found no effect of HPC-dependent mobile robot avoidance or HPC-independent avoidance of a stationary robot on IEG+ ensembles beyond mere exploration. Experiment 3 replicated these findings for c-Fos protein. The data suggest that IEG+ ensembles are driven by a context switch and shrink over time during sustained presence in the same environment. We found no evidence of task demands or their change affecting the size, stability over time, or task-specificity of IEG+ ensembles. These results shed light on the temporal dynamics of CA1 IEG+ ensembles, and their control by contextual and behavioral factors.
Collapse
Affiliation(s)
- Branislav Krajcovic
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia; Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Daniela Cernotova
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia; Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Helena Buchtova
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia; Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Ales Stuchlik
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Stepan Kubik
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Yao Y, Shao H, Masters J, Ji M, Yang J, Tian J, Sun X, Zhou Y, Ren Y, Zhang Z, Ma D, Chen J, Yao H. Cardiac surgery with valve replacement temporarily disrupts the hippocampal memory network. Br J Anaesth 2025; 134:402-413. [PMID: 39706701 DOI: 10.1016/j.bja.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Systemic inflammation after heart valve replacement surgery commonly results in complications including cognitive impairment. This study was designed to investigate whether valvular heart disease itself and inflammation after valve replacement surgery affects cognition and the related functional connectivity (FC) of the hippocampal memory network. METHODS Forty-three patients with valvular heart disease were screened for recruitment and assessed with cognition function tests, blood inflammatory cytokine measurements, and functional magnetic resonance imaging scans before surgery and on postoperative day 7 and 30. Age- and sex-matched healthy controls (n=30) were recruited for comparison. The brain FC networks using the hippocampus as a seed were analysed. Bivariate correlation and structural equation model analyses were carried out to investigate the association between altered FC, memory, and inflammation. RESULTS Thirty-five patients and 29 healthy controls completed the study, and their data were finally analysed and reported. Compared with healthy controls, the surgery group had increased FC in the bilateral precuneus and middle cingulate and paracingulate gyri before surgery. They exhibited impaired memory, increased plasma concentrations of proinflammatory cytokines, and decreased hippocampal FC at postoperative day 7. At 30 days after surgery, the FC abnormalities seen before surgery and at postoperative day 7 were restored to the level comparable with the healthy controls. High systemic inflammation was significantly associated with worse memory and lower FC in the hippocampal memory network. CONCLUSIONS Valve replacement surgery temporarily disrupts the hippocampal memory network with transient associated memory decline. CLINICAL TRIAL REGISTRATION ChiCTR2300069614.
Collapse
Affiliation(s)
- Yue Yao
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hongan Shao
- Department of Thoracic Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Joe Masters
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Muhuo Ji
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yang
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jun Tian
- Department of Radiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Sun
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Ren
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zexin Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK; Perioperative and Systems Medicine Laboratory and Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, Zhejiang, China.
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, Jiangsu, China; Medical Imaging Centre, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Hao Yao
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Schmill LP, Bohle K, Röhrdanz N, Schiffelholz T, Balueva K, Wulff P. Regional and interhemispheric differences of neuronal representations in dentate gyrus and CA3 inferred from expression of zif268. Sci Rep 2023; 13:18443. [PMID: 37891194 PMCID: PMC10611715 DOI: 10.1038/s41598-023-45304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The hippocampal formation is one of the best studied brain regions for spatial and mnemonic representations. These representations have been reported to differ in their properties for individual hippocampal subregions. One approach that allows the detection of neuronal representations is immediate early gene imaging, which relies on the visualization of genomic responses of activated neuronal populations, so called engrams. This method permits the within-animal comparison of neuronal representations across different subregions. In this work, we have used compartmental analysis of temporal activity by fluorescence in-situ hybridisation (catFISH) of the immediate early gene zif268/erg1 to compare neuronal representations between subdivisions of the dentate gyrus and CA3 upon exploration of different contexts. Our findings give an account of subregion-specific ensemble sizes. We confirm previous results regarding disambiguation abilities in dentate gyrus and CA3 but in addition report novel findings: Although ensemble sizes in the lower blade of the dentate gyrus are significantly smaller than in the upper blade both blades are responsive to environmental change. Beyond this, we show significant differences in the representation of familiar and novel environments along the longitudinal axis of dorsal CA3 and most interestingly between CA3 regions of both hemispheres.
Collapse
Affiliation(s)
- Lars-Patrick Schmill
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
- Clinic for Radiology and Neuroradiology, UKSH, Kiel, Germany
| | - Katharina Bohle
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
- Clinic for Orthopaedic and Trauma and Reconstructive Surgery, Klinikum Frankfurt Höchst GmbH, Frankfurt am Main, Germany
| | - Niels Röhrdanz
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Schiffelholz
- Center of Integrative Psychiatry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Kira Balueva
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
4
|
Lee JQ, McHugh R, Morgan E, Sutherland RJ, McDonald RJ. Behaviour-driven Arc expression is greater in dorsal than ventral CA1 regardless of task or sex differences. Behav Brain Res 2022; 423:113790. [PMID: 35149121 DOI: 10.1016/j.bbr.2022.113790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Abstract
Evidence from genetic, behavioural, anatomical, and physiological study suggests that the hippocampus functionally differs across its longitudinal (dorsoventral or septotemporal) axis. Although, how to best characterize functional and representational differences in the hippocampus across its long axis remains unclear. While some suggest that the hippocampus can be divided into dorsal and ventral subregions that support distinct cognitive functions, others posit that these regions vary in their granularity of representation, wherein spatial-temporal resolution decreases in the ventral (temporal) direction. Importantly, the cognitive and granular hypotheses also make distinct predictions on cellular recruitment dynamics under conditions when animals perform tasks with qualitatively different cognitive-behavioural demands. One interpretation of the cognitive function account implies that dorsal and ventral cellular recruitment differs depending on relevant behavioural demands, while the granularity account suggests similar recruitment dynamics regardless of the nature of the task performed. Here, we quantified cellular recruitment with the immediate early gene (IEG) Arc across the entire longitudinal CA1 axis in female and male rats performing spatial- and fear-guided memory tasks. Our results show that recruitment is greater in dorsal than ventral CA1 regardless of task or sex, and thus support a granular view of hippocampal function across the long axis. We further discuss how future experiments might determine the relative contributions of cognitive function and granularity of representation to neuronal activity dynamics in hippocampal circuits.
Collapse
Affiliation(s)
- J Quinn Lee
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada; Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, Verdun, QC H4H 1R3, Canada.
| | - Rebecca McHugh
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Erik Morgan
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| | - Robert J McDonald
- Department of Neuroscience, Science Commons, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 6T5, Canada
| |
Collapse
|
5
|
Gheidi A, Damphousse CC, Marrone DF. Experience-dependent persistent Arc expression is reduced in the aged hippocampus. Neurobiol Aging 2020; 95:225-230. [PMID: 32861833 DOI: 10.1016/j.neurobiolaging.2020.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/18/2022]
Abstract
Aging is typically accompanied by both memory decline and changes in hippocampal function. Lasting memory is thought to also require recapitulation of recent memory traces during subsequent rest-a phenomenon termed memory trace reactivation or replay. Replay becomes less synchronized in the CA1 region of aged animals, and while subtle, this deficit may have profound physiological consequences for driving plasticity. Importantly, spike timing changes during replay may impair the induction of plasticity-regulating gene products, such as activity-regulated cytoskeletal protein (Arc). To test this hypothesis, Arc transcription was assessed both during spatial exploration and subsequent memory-related replay in hippocampal CA1 of young and aged animals. A significant age-related difference was observed in the pattern of pyramidal cells expressing Arc during rest, supporting the hypothesis that altered plasticity-related cascade is a major consequence of the changes in coordinated activity that occur during consolidation in older animals.
Collapse
Affiliation(s)
- Ali Gheidi
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
6
|
Abstract
De novo protein synthesis is critical for memory formation. We found that protein synthesis during acquisition is transiently required for contextual memory formation. We identified one candidate gene, Nrgn (encoding protein neurogranin, Ng) with enhanced translation upon novel-context exposure, and found that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. Furthermore, fragile-X mental retardation protein interacts with the 3′UTR of the Nrgn mRNA, which is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Together, these results indicate that experience-dependent and acute translation of Ng in the hippocampus during memory acquisition enables durable context memory encoding. Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3′UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding.
Collapse
|
7
|
Abstract
Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.
Collapse
|
8
|
Chawla MK, Sutherland VL, Olson K, McNaughton BL, Barnes CA. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus. Hippocampus 2018; 28:178-185. [PMID: 29232477 DOI: 10.1002/hipo.22820] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022]
Abstract
Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal-ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior-driven cells across the dorsal-ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two- to-threefold reduction in spatial behavior-driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self-motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non-spatial information within the hippocampus along its dorso-ventral axis.
Collapse
Affiliation(s)
- M K Chawla
- ARL Div of Neural Systems, Memory and Aging and Evelyn F. McKnight Brain, Institute, Univ Arizona, Tucson, Arizona
| | - V L Sutherland
- National Toxicology Program, NIEHS, Research Triangle Park, North Carolina
| | - K Olson
- ARL Div of Neural Systems, Memory and Aging and Evelyn F. McKnight Brain, Institute, Univ Arizona, Tucson, Arizona
| | - B L McNaughton
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, T1K 3M4, Alberta.,Department of Neurobiology and Behavior, Center for Neurobiology of Learning and Memory, University California, Irvine, 92697
| | - C A Barnes
- ARL Div of Neural Systems, Memory and Aging and Evelyn F. McKnight Brain, Institute, Univ Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Chalmers E, Luczak A, Gruber AJ. Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning. Front Comput Neurosci 2016; 10:128. [PMID: 28018203 PMCID: PMC5149552 DOI: 10.3389/fncom.2016.00128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL) to guide “goal-directed” behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals' ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, “forward sweeps” through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort) required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks.
Collapse
Affiliation(s)
- Eric Chalmers
- Department of Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Artur Luczak
- Department of Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Aaron J Gruber
- Department of Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
10
|
Kinnavane L, Amin E, Olarte-Sánchez CM, Aggleton JP. Detecting and discriminating novel objects: The impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 2016; 26:1393-1413. [PMID: 27398938 PMCID: PMC5082501 DOI: 10.1002/hipo.22615] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Perirhinal cortex provides object‐based information and novelty/familiarity information for the hippocampus. The necessity of these inputs was tested by comparing hippocampal c‐fos expression in rats with or without perirhinal lesions. These rats either discriminated novel from familiar objects (Novel‐Familiar) or explored pairs of novel objects (Novel‐Novel). Despite impairing Novel‐Familiar discriminations, the perirhinal lesions did not affect novelty detection, as measured by overall object exploration levels (Novel‐Novel condition). The perirhinal lesions also largely spared a characteristic network of linked c‐fos expression associated with novel stimuli (entorhinal cortex→CA3→distal CA1→proximal subiculum). The findings show: I) that perirhinal lesions preserve behavioral sensitivity to novelty, whilst still impairing the spontaneous ability to discriminate novel from familiar objects, II) that the distinctive patterns of hippocampal c‐fos activity promoted by novel stimuli do not require perirhinal inputs, III) that entorhinal Fos counts (layers II and III) increase for novelty discriminations, IV) that hippocampal c‐fos networks reflect proximal‐distal connectivity differences, and V) that discriminating novelty creates different pathway interactions from merely detecting novelty, pointing to top‐down effects that help guide object selection. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Kinnavane
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom.
| | - Eman Amin
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| |
Collapse
|
11
|
Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology 2016; 41:24-44. [PMID: 26068726 PMCID: PMC4677119 DOI: 10.1038/npp.2015.167] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
The generalization of fear is an adaptive, behavioral, and physiological response to the likelihood of threat in the environment. In contrast, the overgeneralization of fear, a cardinal feature of posttraumatic stress disorder (PTSD), manifests as inappropriate, uncontrollable expression of fear in neutral and safe environments. Overgeneralization of fear stems from impaired discrimination of safe from aversive environments or discernment of unlikely threats from those that are highly probable. In addition, the time-dependent erosion of episodic details of traumatic memories might contribute to their generalization. Understanding the neural mechanisms underlying the overgeneralization of fear will guide development of novel therapeutic strategies to combat PTSD. Here, we conceptualize generalization of fear in terms of resolution of interference between similar memories. We propose a role for a fundamental encoding mechanism, pattern separation, in the dentate gyrus (DG)-CA3 circuit in resolving interference between ambiguous or uncertain threats and in preserving episodic content of remote aversive memories in hippocampal-cortical networks. We invoke cellular-, circuit-, and systems-based mechanisms by which adult-born dentate granule cells (DGCs) modulate pattern separation to influence resolution of interference and maintain precision of remote aversive memories. We discuss evidence for how these mechanisms are affected by stress, a risk factor for PTSD, to increase memory interference and decrease precision. Using this scaffold we ideate strategies to curb overgeneralization of fear in PTSD.
Collapse
|
12
|
Marrone DF, Satvat E, Odintsova IV, Gheidi A. Dissociation of spatial representations within hippocampal region CA3. Hippocampus 2014; 24:1417-20. [PMID: 25220839 DOI: 10.1002/hipo.22367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/29/2014] [Accepted: 09/09/2014] [Indexed: 11/12/2022]
Abstract
Classic models of the hippocampus uniformly ascribe pattern completion to CA3, but recent data suggest CA3c (enclosed by the dentate gyrus) may act in a manner more consistent with the dentate and aid in pattern separation. The ideal test for functional distinction within CA3, however, is to compare the responses in these regions in the same animal in multiple contexts. To accomplish this, animals visited two contexts with varying degrees of similarity and the pattern of repeated Arc expression was examined across the pyramidal cell layer. Under conditions of partial cue change, responses in CA3c are far more distinct than CA3a/b, consistent with evidence for functional diversity along the transverse axis of CA3. These data add to the mounting evidence that "classic" roles ascribed to CA3 in learning and memory require re-evaluation.
Collapse
Affiliation(s)
- Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada; McKnight Brain Institute, University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
13
|
Theta dynamics in rat: speed and acceleration across the Septotemporal axis. PLoS One 2014; 9:e97987. [PMID: 24842406 PMCID: PMC4026415 DOI: 10.1371/journal.pone.0097987] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 04/28/2014] [Indexed: 11/25/2022] Open
Abstract
Theta (6–12 Hz) rhythmicity in the local field potential (LFP) reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long) axis of the hippocampus (HPC). The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG) sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions.
Collapse
|
14
|
Skinner DM, Martin GM, Wright SL, Tomlin J, Odintsova IV, Thorpe CM, Harley CW, Marrone DF. Hippocampal spatial mapping and the acquisition of competing responses. Hippocampus 2013; 24:396-402. [PMID: 24375643 DOI: 10.1002/hipo.22233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 11/07/2022]
Abstract
Response reversal learning is facilitated in many species, including humans, when competing responses occur in separate contexts. This suggests hippocampal maps may facilitate the acquisition of competing responses and is consistent with the hypothesis that contextual encoding permits rapid acquisition of new behaviors in similar environments. To test this hypothesis, the pattern of Arc expression was examined after rats completed a series of left/right response reversals in a T-maze. This reversal training occurred in the same room, two different rooms, or within a single room but with the maze enclosed in wall-length curtains of different configurations (i.e., black/white square or circle). Across CA1 and CA3, successive T-maze exposures in the same room recruited the same cells to repeatedly transcribe Arc, while a unique population of cells transcribed Arc in response to each of two different rooms as well as to the two unique curtain configurations in the same room. The interference from original learning that was evident on the first reversal in animals without a context switch was absent in groups that experienced changes in room or curtain configuration. However, only the use of unique rooms, and not changes in the curtained enclosure, facilitated learning across response reversals relative to the groups exposed to only one room. Thus, separate hippocampal maps appear to provide protection from the original learning interference but do not support improved reversals over trials. The present data suggest changes in heading direction input, rather than remapping, are the source of facilitation of reversal learning.
Collapse
Affiliation(s)
- Darlene M Skinner
- Department of Psychology, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Transcription of the immediate-early gene Arc in CA1 of the hippocampus reveals activity differences along the proximodistal axis that are attenuated by advanced age. J Neurosci 2013; 33:3424-33. [PMID: 23426670 DOI: 10.1523/jneurosci.4727-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The CA1 region of the hippocampus receives distinct patterns of afferent input to distal (near subiculum) and proximal (near CA2) zones. Specifically, distal CA1 receives a direct projection from cells in the lateral entorhinal cortex that are sensitive to objects, whereas proximal CA1 is innervated by cells in the medial entorhinal cortex that are responsive to space. This suggests that neurons in different areas along the proximodistal axis of CA1 of the hippocampus will be functionally distinct. The current experiment investigated this possibility by monitoring behavior-induced cell activity across the CA1 axis using Arc mRNA imaging methods that compared adult and old rats in two conditions: (1) exploration of the same environment containing the same objects twice (AA) or (2) exploration of two different environments that contained identical objects (AB). The hypothesis was that CA1 place cells should show field remapping in the condition in which environments were changed, but the extent of remapping was expected to differ between proximal and distal regions and between age groups. In fact, neurons in the proximal region of CA1 in adult animals exhibited a greater degree of remapping than did distal CA1 cells when the environment changed, suggesting that cells receiving input from the medial entorhinal cortex are more sensitive to spatial context. However, in old rats, there were no differences in remapping across the proximodistal CA1 axis. Together, these data suggest that distal and proximal CA1 may be functionally distinct and differentially vulnerable to normative aging processes.
Collapse
|
16
|
Schmidt B, Hinman JR, Jacobson TK, Szkudlarek E, Argraves M, Escabí MA, Markus EJ. Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making. J Neurosci 2013; 33:6212-24. [PMID: 23554502 PMCID: PMC6618918 DOI: 10.1523/jneurosci.2915-12.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/06/2013] [Accepted: 02/23/2013] [Indexed: 11/21/2022] Open
Abstract
Hippocampal theta oscillations are postulated to support mnemonic processes in humans and rodents. Theta oscillations facilitate encoding and spatial navigation, but to date, it has been difficult to dissociate the effects of volitional movement from the cognitive demands of a task. Therefore, we examined whether volitional movement or cognitive demands exerted a greater modulating factor over theta oscillations during decision-making. Given the anatomical, electrophysiological, and functional dissociations along the dorsal-ventral axis, theta oscillations were simultaneously recorded in the dorsal and ventral hippocampus in rats trained to switch between place and motor-response strategies. Stark differences in theta characteristics were found between the dorsal and ventral hippocampus in frequency, power, and coherence. Theta power increased in the dorsal, but decreased in the ventral hippocampus, during the decision-making epoch. Interestingly, the relationship between running speed and theta power was uncoupled during the decision-making epoch, a phenomenon limited to the dorsal hippocampus. Theta frequency increased in both the dorsal and ventral hippocampus during the decision epoch, although this effect was greater in the dorsal hippocampus. Despite these differences, ventral hippocampal theta was responsive to the navigation task; theta frequency, power, and coherence were all affected by cognitive demands. Theta coherence increased within the dorsal hippocampus during the decision-making epoch on all three tasks. However, coherence selectively increased throughout the hippocampus (dorsal to ventral) on the task with new hippocampal learning. Interestingly, most results were consistent across tasks, regardless of hippocampal-dependent learning. These data indicate increased integration and cooperation throughout the hippocampus during information processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Monty A. Escabí
- Departments of Psychology
- Biomedical Engineering, and
- Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269
| | | |
Collapse
|