1
|
Drouin JR, Davis CP. Individual differences in visual pattern completion predict adaptation to degraded speech. BRAIN AND LANGUAGE 2024; 255:105449. [PMID: 39083999 DOI: 10.1016/j.bandl.2024.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/18/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Recognizing acoustically degraded speech relies on predictive processing whereby incomplete auditory cues are mapped to stored linguistic representations via pattern recognition processes. While listeners vary in their ability to recognize degraded speech, performance improves when a written transcription is presented, allowing completion of the partial sensory pattern to preexisting representations. Building on work characterizing predictive processing as pattern completion, we examined the relationship between domain-general pattern recognition and individual variation in degraded speech learning. Participants completed a visual pattern recognition task to measure individual-level tendency towards pattern completion. Participants were also trained to recognize noise-vocoded speech with written transcriptions and tested on speech recognition pre- and post-training using a retrieval-based transcription task. Listeners significantly improved in recognizing speech after training, and pattern completion on the visual task predicted improvement for novel items. The results implicate pattern completion as a domain-general learning mechanism that can facilitate speech adaptation in challenging contexts.
Collapse
Affiliation(s)
- Julia R Drouin
- Division of Speech and Hearing Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Communication Sciences and Disorders, California State University Fullerton, Fullerton, CA 92831, USA.
| | - Charles P Davis
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Gellersen HM, McMaster J, Abdurahman A, Simons JS. Demands on perceptual and mnemonic fidelity are a key determinant of age-related cognitive decline throughout the lifespan. J Exp Psychol Gen 2024; 153:200-223. [PMID: 38236240 PMCID: PMC10795485 DOI: 10.1037/xge0001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 01/19/2024]
Abstract
Aging results in less detailed memories, reflecting reduced fidelity of remembered compared to real-world representations. We tested whether poorer representational fidelity across perception, short-term memory (STM), and long-term memory (LTM) are among the earliest signs of cognitive aging. Our paradigm probed target-lure object mnemonic discrimination and precision of object-location binding. Across the lifespan, cognitive deficits were observed in midlife when detailed stimulus representations were required for perceptual and short/long-term forced choice mnemonic discrimination. A continuous metric of object-location source memory combined with computational modeling demonstrated that errors in STM and LTM in middle-aged adults were largely driven by a loss of precision for retrieved memories, not necessarily by forgetting. On a trial-by-trial basis, fidelity of item and spatial information was more tightly bound in LTM compared to STM with this association being unaffected by age. Standard neuropsychological tests without demands on memory quality (digit span, verbal learning) were less sensitive to age effects than STM and LTM precision. Perceptual discrimination predicted mnemonic discrimination. Neuropsychological proxies for prefrontal executive functions correlated with STM, but not LTM fidelity. Conversely, neuropsychological indicators of hippocampal integrity correlated with mnemonic discrimination and precision of both STM and LTM, suggesting partially dissociable mechanisms of interindividual variability in STM and LTM fidelity. These findings suggest that reduced representational fidelity is a hallmark of cognitive aging across perception, STM, and LTM and can be observed from midlife onward. Continuous memory precision tasks may be promising for the early detection of subtle age-related cognitive decline. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Jon S Simons
- Department of Psychology, University of Cambridge
| |
Collapse
|
3
|
Jacob N, So I, Sharma B, Marzolini S, Tartaglia MC, Oh P, Green R. Effects of High-Intensity Interval Training Protocols on Blood Lactate Levels and Cognition in Healthy Adults: Systematic Review and Meta-Regression. Sports Med 2023; 53:977-991. [PMID: 36917435 DOI: 10.1007/s40279-023-01815-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Some health benefits from high-intensity interval training (HIIT) are facilitated by peripheral blood lactate levels. However, the lactate response from HIIT is variable and dependent on protocol parameters. OBJECTIVES We aimed to determine the HIIT protocol parameters that elicited peak lactate levels, and how these levels are associated with post-HIIT cognitive performance. STUDY DESIGN We conducted a systematic review with meta-regression. METHODS MEDLINE, Embase, CENTRAL, SPORTDiscus, and CINAHL + were searched from database inception to 8 April, 2022. Peer-reviewed primary research in healthy adults that determined lactate (mmol/L) and cognitive performance after one HIIT session was included. Mixed-effects meta-regressions determined the protocol parameters that elicited peak lactate levels, and linear regressions modelled the relationship between lactate levels and cognitive performance. RESULTS Study entries (n = 226) involving 2560 participants (mean age 24.1 ± 4.7 years) were included in the meta-regression. A low total work-interval volume (~ 5 min), recovery intervals that are about five times longer than work intervals, and a medium session volume (~ 15 min), elicited peak lactate levels, even when controlling for intensity, fitness (peak oxygen consumption) and blood measurement methods. Lactate levels immediately post-HIIT explained 14-17% of variance in Stroop interference condition at 30 min post-HIIT. CONCLUSIONS A HIIT protocol that uses the above parameters (e.g., 8 × 30-s maximal intensity with 90-s recovery) can elicit peak lactate, a molecule that is known to benefit the central nervous system and be involved in exercise training adaptations. This review reports the state of the science in regard to the lactate response following HIIT, which is relevant to those in the sports medicine field designing HIIT training programs. TRIAL REGISTRY Clinical Trial Registration: PROSPERO (CRD42020204400).
Collapse
Affiliation(s)
- Nithin Jacob
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,University Health Network, Toronto, ON, Canada
| | - Isis So
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada
| | - Bhanu Sharma
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Susan Marzolini
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,University Health Network, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Kembril Research Institute, Toronto Western-University Health Network, Toronto, ON, Canada
| | - Paul Oh
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,University Health Network, Toronto, ON, Canada
| | - Robin Green
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada. .,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada. .,University Health Network, Toronto, ON, Canada.
| |
Collapse
|
4
|
Wang H, Sun N, Wang X, Han J, Zhang Y, Huang Y, Zhou W. A touchscreen-based paradigm to measure visual pattern separation and pattern completion in mice. Front Neurosci 2022; 16:947742. [PMID: 36090275 PMCID: PMC9449699 DOI: 10.3389/fnins.2022.947742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 11/27/2022] Open
Abstract
Memory accuracy involves two major processes: pattern separation and pattern completion. Pattern separation refers to the ability to reduce overlap among similar inputs to avoid interference, and pattern completion refers to the ability to retrieve the whole information from partial or degraded cues. Impairments in pattern separation/pattern completion contribute to cognitive deficits in several diseases of the nervous system. Therefore, it is better to evaluate both pattern separation and pattern completion in one apparatus. However, few tools are available to assess pattern separation and pattern completion within the same apparatus for rodents. In this study, we designed a series of images with varying degrees of similarity to the correct image to evaluate pattern separation and pattern completion. First, mice were trained to discriminate between two totally different images, and once the correct percentage reached above 77% for two consecutive days, the images with different degrees of similarity were used to measure pattern separation and pattern completion. The results showed the mice performed progressively worse from S0 to S4 (increasing similarity) when discriminating similar images in pattern separation, and the mice performed progressively worse from C0 to C4 (decreasing cues information) when recalling the correct image according to partial cues in pattern completion, implying a good image similarity-dependent manner for memory accuracy evaluation. In sum, we designed a convenient, effective paradigm to evaluate pattern separation and pattern completion based on a touchscreen pairwise discrimination task, which may provide a new method for the studies of the effects and mechanisms of memory accuracy enhancing drugs.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Sun
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyue Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jinyuan Han
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yan Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Yan Huang,
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Wenxia Zhou,
| |
Collapse
|
5
|
Santhanam P, Nath T, Lindquist MA, Cooper DS. Relationship Between TSH Levels and Cognition in the Young Adult: An Analysis of the Human Connectome Project Data. J Clin Endocrinol Metab 2022; 107:1897-1905. [PMID: 35389477 DOI: 10.1210/clinem/dgac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The nature of the relationship between serum thyrotropin (TSH) levels and higher cognitive abilities is unclear, especially within the normal reference range and in the younger population. OBJECTIVE To assess the relationship between serum TSH levels and mental health and sleep quality parameters (fluid intelligence [Gf], MMSE (Mini-Mental State Examination), depression scores, and, finally, Pittsburgh Sleep Quality Index (PSQI) scores (working memory, processing speed, and executive function) in young adults. METHODS This was a retrospective analysis of the data from the Human Connectome Project (HCP). The HCP consortium is seeking to map human brain circuits systematically and identify their relationship to behavior in healthy adults. Included were 391 female and 412 male healthy participants aged 22-35 years at the time of the screening interview. We excluded persons with serum TSH levels outside the reference range (0.4-4.5 mU/L). TSH was transformed logarithmically (log TSH). All the key variables were normalized and then linear regression analysis was performed to assess the relationship between log TSH as a cofactor and Gf as the dependent variable. Finally, a machine learning method, random forest regression, predicted Gf from the dependent variables (including alcohol and tobacco use). The main outcome was normalized Gf (nGf) and Gf scores. RESULTS Log TSH was a significant co-predictor of nGF in females (β = 0.31(±0.1), P < .01) but not in males. Random forest analysis showed that the model(s) had a better predictive value for females (r = 0.39, mean absolute error [MAE] = 0.81) than males (r = 0.24, MAE = 0.77). CONCLUSION Higher serum TSH levels might be associated with higher Gf scores in young women.
Collapse
Affiliation(s)
- Prasanna Santhanam
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tanmay Nath
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David S Cooper
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Belchev Z, Boulos ME, Rybkina J, Johns K, Jeffay E, Colella B, Ozubko J, Bray MJC, Di Genova N, Levi A, Changoor A, Worthington T, Gilboa A, Green R. Remotely delivered environmental enrichment intervention for traumatic brain injury: Study protocol for a randomised controlled trial. BMJ Open 2021; 11:e039767. [PMID: 33574141 PMCID: PMC7880099 DOI: 10.1136/bmjopen-2020-039767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Individuals with moderate-severe traumatic brain injury (m-sTBI) experience progressive brain and behavioural declines in the chronic stages of injury. Longitudinal studies found that a majority of patients with m-sTBI exhibit significant hippocampal atrophy from 5 to 12 months post-injury, associated with decreased cognitive environmental enrichment (EE). Encouragingly, engaging in EE has been shown to lead to neural improvements, suggesting it is a promising avenue for offsetting hippocampal neurodegeneration in m-sTBI. Allocentric spatial navigation (ie, flexible, bird's eye view approach), is a good candidate for EE in m-sTBI because it is associated with hippocampal activation and reduced ageing-related volume loss. Efficacy of EE requires intensive daily training, prohibitive within most current health delivery systems. The present protocol is a novel, remotely delivered and self-administered intervention designed to harness principles from EE and allocentric spatial navigation to offset hippocampal atrophy and potentially improve hippocampal functions such as navigation and memory for patients with m-sTBI. METHODS AND ANALYSIS Eighty-four participants with chronic m-sTBI are being recruited from an urban rehabilitation hospital and randomised into a 16-week intervention (5 hours/week; total: 80 hours) of either targeted spatial navigation or an active control group. The spatial navigation group engages in structured exploration of different cities using Google Street View that includes daily navigation challenges. The active control group watches and answers subjective questions about educational videos. Following a brief orientation, participants remotely self-administer the intervention on their home computer. In addition to feasibility and compliance measures, clinical and experimental cognitive measures as well as MRI scan data are collected pre-intervention and post-intervention to determine behavioural and neural efficacy. ETHICS AND DISSEMINATION Ethics approval has been obtained from ethics boards at the University Health Network and University of Toronto. Findings will be presented at academic conferences and submitted to peer-reviewed journals. TRIAL REGISTRATION NUMBER Version 3, ClinicalTrials.gov Registry (NCT04331392).
Collapse
Affiliation(s)
- Zorry Belchev
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Mary Ellene Boulos
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| | - Julia Rybkina
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| | - Kadeen Johns
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Eliyas Jeffay
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Brenda Colella
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Jason Ozubko
- Department of Psychology, The State University of New York, Geneseo, New York, USA
| | - Michael Johnathan Charles Bray
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Di Genova
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada
| | - Adina Levi
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Alana Changoor
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Global Health Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Worthington
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Robin Green
- KITE, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Nyberg L, Grande X, Andersson M, Berron D, Lundquist A, Stiernstedt M, Fjell A, Walhovd K, Orädd G. Forecasting memory function in aging: pattern-completion ability and hippocampal activity relate to visuospatial functioning over 25 years. Neurobiol Aging 2020; 94:217-226. [PMID: 32650185 DOI: 10.1016/j.neurobiolaging.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022]
Abstract
Heterogeneity in episodic memory functioning in aging was assessed with a pattern-completion functional magnetic resonance imaging task that required reactivation of well-consolidated face-name memory traces from fragmented (partial) or morphed (noisy) face cues. About half of the examined individuals (N = 101) showed impaired (chance) performance on fragmented faces despite intact performance on complete and morphed faces, and they did not show a pattern-completion response in hippocampus or the examined subfields (CA1, CA23, DGCA4). This apparent pattern-completion deficit could not be explained by differential hippocampal atrophy. Instead, the impaired group displayed lower cortical volumes, accelerated reduction in mini-mental state examination scores, and lower general cognitive function as defined by longitudinal measures of visuospatial functioning and speed-of-processing. In the full sample, inter-individual differences in visuospatial functioning predicted performance on fragmented faces and hippocampal CA23 subfield activity over 25 years. These findings suggest that visuospatial functioning in middle age can forecast pattern-completion deficits in aging.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Xenia Grande
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Statistics, USBE Umeå University, Umeå, Sweden
| | - Mikael Stiernstedt
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anders Fjell
- UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine Walhovd
- UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Wynn JS, Ryan JD, Buchsbaum BR. Eye movements support behavioral pattern completion. Proc Natl Acad Sci U S A 2020; 117:6246-6254. [PMID: 32123109 PMCID: PMC7084073 DOI: 10.1073/pnas.1917586117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ability to recall a detailed event from a simple reminder is supported by pattern completion, a cognitive operation performed by the hippocampus wherein existing mnemonic representations are retrieved from incomplete input. In behavioral studies, pattern completion is often inferred through the false endorsement of lure (i.e., similar) items as old. However, evidence that such a response is due to the specific retrieval of a similar, previously encoded item is severely lacking. We used eye movement (EM) monitoring during a partial-cue recognition memory task to index reinstatement of lure images behaviorally via the recapitulation of encoding-related EMs or gaze reinstatement. Participants reinstated encoding-related EMs following degraded retrieval cues and this reinstatement was negatively correlated with accuracy for lure images, suggesting that retrieval of existing representations (i.e., pattern completion) underlies lure false alarms. Our findings provide evidence linking gaze reinstatement and pattern completion and advance a functional role for EMs in memory retrieval.
Collapse
Affiliation(s)
- Jordana S Wynn
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada;
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| | - Jennifer D Ryan
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| | - Bradley R Buchsbaum
- Department of Psychology, University of Toronto, Toronto, ON M55 3G3, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
9
|
Wynn JS, Shen K, Ryan JD. Eye Movements Actively Reinstate Spatiotemporal Mnemonic Content. Vision (Basel) 2019; 3:E21. [PMID: 31735822 PMCID: PMC6802778 DOI: 10.3390/vision3020021] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022] Open
Abstract
Eye movements support memory encoding by binding distinct elements of the visual world into coherent representations. However, the role of eye movements in memory retrieval is less clear. We propose that eye movements play a functional role in retrieval by reinstating the encoding context. By overtly shifting attention in a manner that broadly recapitulates the spatial locations and temporal order of encoded content, eye movements facilitate access to, and reactivation of, associated details. Such mnemonic gaze reinstatement may be obligatorily recruited when task demands exceed cognitive resources, as is often observed in older adults. We review research linking gaze reinstatement to retrieval, describe the neural integration between the oculomotor and memory systems, and discuss implications for models of oculomotor control, memory, and aging.
Collapse
Affiliation(s)
- Jordana S. Wynn
- Rotman Research Institute, Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, 100 St George St., Toronto, ON M5S 3G3, Canada
| | - Kelly Shen
- Rotman Research Institute, Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
| | - Jennifer D. Ryan
- Rotman Research Institute, Baycrest, 3560 Bathurst St., Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, 100 St George St., Toronto, ON M5S 3G3, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON M5T 1R8, Canada
| |
Collapse
|
10
|
Vieweg P, Riemer M, Berron D, Wolbers T. Memory Image Completion: Establishing a task to behaviorally assess pattern completion in humans. Hippocampus 2019; 29:340-351. [PMID: 30246900 PMCID: PMC6519020 DOI: 10.1002/hipo.23030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 11/06/2022]
Abstract
For memory retrieval, pattern completion is a crucial process that restores memories from partial or degraded cues. Neurocognitive aging models suggest that the aged memory system is biased toward pattern completion, resulting in a behavioral preference for retrieval over encoding of memories. Here, we built on our previously developed behavioral recognition memory paradigm-the Memory Image Completion (MIC) task-a task to specifically target pattern completion. First, we used the original design with concurrent eye-tracking in order to rule out perceptual confounds that could interact with recognition performance. Second, we developed parallel versions of the task to accommodate test settings in clinical environments or longitudinal studies. The results show that older adults have a deficit in pattern completion ability with a concurrent bias toward pattern completion. Importantly, eye-tracking data during encoding could not account for age-related performance differences. At retrieval, spatial viewing patterns for both age groups were more driven by stimulus identity than by response choice, but compared to young adults, older adults' fixation patterns overlapped more between stimuli that they (wrongly) thought had the same identity. This supports the observation that older adults choose responses perceived as similar to a learned stimulus, indicating a bias toward pattern completion. Additionally, two shorter versions of the task yielded comparable results, and no general learning effects were observed for repeated testing. Together, we present evidence that the MIC is a reliable behavioral task that targets pattern completion, that is easily and repeatedly applicable, and that is made freely available online.
Collapse
Affiliation(s)
- Paula Vieweg
- Institute of Psychology, University of LeipzigLeipzigGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin Riemer
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Medical Faculty, University Hospital Magdeburg (FME)Otto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University MagdeburgMagdeburgGermany
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Medical Faculty, University Hospital Magdeburg (FME)Otto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| |
Collapse
|