1
|
Eyolfson E, Suesser KRB, Henry H, Bonilla-Del Río I, Grandes P, Mychasiuk R, Christie BR. The effect of traumatic brain injury on learning and memory: A synaptic focus. Neuroscientist 2025; 31:195-214. [PMID: 39316552 PMCID: PMC11909778 DOI: 10.1177/10738584241275583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Deficits in learning and memory are some of the most commonly reported symptoms following a traumatic brain injury (TBI). We will examine whether the neural basis of these deficits stems from alterations to bidirectional synaptic plasticity within the hippocampus. Although the CA1 subregion of the hippocampus has been a focus of TBI research, the dentate gyrus should also be given attention as it exhibits a unique ability for adult neurogenesis, a process highly susceptible to TBI-induced damage. This review examines our current understanding of how TBI results in deficits in synaptic plasticity, as well as how TBI-induced changes in endocannabinoid (eCB) systems may drive these changes. Through the synthesis and amalgamation of existing data, we propose a possible mechanism for eCB-mediated recovery in synaptic plasticity deficits. This hypothesis is based on the plausible roles of CB1 receptors in regulating inhibitory tone, influencing astrocytes and microglia, and modulating glutamate release. Dysregulation of the eCBs may be responsible for deficits in synaptic plasticity and learning following TBI. Taken together, the existing evidence indicates eCBs may contribute to TBI manifestation, pathogenesis, and recovery, but it also suggests there may be a therapeutic role for the eCB system in TBI.
Collapse
Affiliation(s)
- Eric Eyolfson
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Kirsten R. B. Suesser
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Holly Henry
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian R. Christie
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
2
|
Alami K, Fathollahi Y, Hashemizadeh S, Mosleh M, Semnanian S, Mousavi SY, Azizi H. Microglia-dependent peripheral neuropathic pain in adulthood following adolescent exposure to morphine in male rats. Neuropharmacology 2025; 263:110211. [PMID: 39521039 DOI: 10.1016/j.neuropharm.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Persistent effects of adolescent morphine exposure on neurobiological processes and behaviors in adulthood have been partially identified. Hypersensitivity following adolescent exposure to morphine is a complex and multifaceted phenomenon whose underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of microglia in neuropathic pain sensitivity following adolescent morphine exposure, focused on hippocampal genes expression and plasticity. To achieve this, adolescent male Wistar rats received morphine, along with minocycline, to inhibit microglial activity. The allodynia and hyperalgesia of adult rats were evaluated using von-Frey filaments and the Hargreaves plantar test in both baseline and neuropathic pain conditions. Hippocampal genes expression was analyzed following the behavioral tests. The plasticity of the Schaffer-CA1 hippocampal synapses was also assessed using field potential recording following neuropathy. Results showed that adolescent morphine exposure exacerbated the allodynia and hyperalgesia in both baseline and neuropathic pain states in adult rats, which was significantly reduced by the co-administration of minocycline during adolescence. Neuropathy in adult rats was found to increase hippocampal expression of inflammatory mediators, but adolescent morphine prevented this effect. Additionally, we observed a reduction in the baseline synaptic transmission and long-term potentiation (LTP) at the Schaffer-CA1 hippocampal synapses after neuropathy in adult rats following adolescent exposure to morphine. The reduction of synaptic activity was not altered by the co-administration of minocycline with morphine during adolescence. It is concluded that microglia play an important role in mediating hypersensitivity induced by adolescent morphine exposure, although hippocampal microglia may not be directly involved in this process.
Collapse
Affiliation(s)
- Kawsar Alami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shiva Hashemizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Mosleh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran
| | - Sayed Yousof Mousavi
- Department of Cognitive Neuroscience, Neuroscience Research Center, Kavosh Nonprofit Educational Research Institute, Kabul, Afghanistan
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
4
|
Anvari S, Javan M, Mirnajafi-Zadeh J, Fathollahi Y. Repeated Morphine Exposure Alters Temporoamonic-CA1 Synaptic Plasticity in Male Rat Hippocampus. Neuroscience 2024; 545:148-157. [PMID: 38513764 DOI: 10.1016/j.neuroscience.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
In this study, the electrophysiological and biochemical consequences of repeated exposure to morphine in male rats on glutamatergic synaptic transmission, synaptic plasticity, the expression of GABA receptors and glutamate receptors at the temporoammonic-CA1 synapse along the longitudinal axis of the hippocampus (dorsal, intermediate, ventral, DH, IH, VH, respectively) were investigated. Slice electrophysiological methods, qRT-PCR, and western blotting techniques were used to characterize synaptic plasticity properties. We showed that repeated morphine exposure (RME) reduced excitatory synaptic transmission and ability for long-term potentiation (LTP) in the VH as well as eliminated the dorsoventral difference in paired-pulse responses. A decreased expression of NR2B subunit in the VH and an increased expression GABAA receptor of α1 and α5 subunits in the DH were observed following RME. Furthermore, RME did not affect the expression of NR2A, AMPA receptor subunits, and γ2GABAA and GABAB receptors in either segment of the hippocampus. In sum, the impact of morphine may differ depending on the region of the hippocampus studied. A distinct change in the short- and long-term synaptic plasticity along the hippocampus long axis due to repeated morphine exposure, partially mediated by a change in the expression profile of glutamatergic receptor subunits. These findings can be useful in further understanding the cellular mechanism underlying deficits in information storage and, more generally, cognitive processes resulting from chronic opioid abuse.
Collapse
Affiliation(s)
- Sohrab Anvari
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran.
| |
Collapse
|
5
|
Mohammadi M, Tavassoli Z, Anvari S, Javan M, Fathollahi Y. Avoidance and escape conditioning adjust adult neurogenesis to conserve a fit hippocampus in adult male rodents. J Neurosci Res 2024; 102:e25291. [PMID: 38284841 DOI: 10.1002/jnr.25291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
In this study, the connection between cognitive behaviors and the adult rodent hippocampus was investigated. Recording field potentials at performant pathway (PP)-hippocampal dentate gyrus (DG) synapses in transverse slices from the dorsal (d), intermediate (i), and ventral (v) hippocampus showed differences in paired-pulse responses and long-term potentiation in rats. The Barnes maze (BM) and passive avoidance (PA) tests indicated a decrease in escape latency and step-through latency in both rats and mice over training days. A decrease in the use of random or sequential strategy while an increase in the use of direct strategy to search for an escape box occurred in both groups. Evaluation of the levels of neurogenesis markers (Ki67 and BrdU/NeuN) by immunofluorescence assay in the dDG, iDG, and vDG revealed a long-axis disparity in the hippocampal dentate baseline cell proliferation and exposure to the BM and PA task changed the profile of baseline cell proliferation along the DG in both rats and mice. Also, these learning experiences changed the profile of BrdU+ /NeuN+ cells along the DG of rats. Quantitation of hippocampal BDNF protein levels using ELISA exhibited no changes in BDNF levels due to learning experiences in rats. We demonstrate that PP-DG synaptic efficacy and neurogenesis are organized along a gradient. Avoidance and escape conditioning themselves are sufficient to change and calibrate adult neurogenesis along the hippocampal long axis in rodents. Further research will be required to determine the precise mechanisms underlying the role of experience-derived neuroplasticity in cognitive function and decline.
Collapse
Affiliation(s)
- Masoud Mohammadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Tavassoli
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sohrab Anvari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Khani F, Pourmotabbed A, Hosseinmardi N, Alaee E, Fathollahi Y, Azizi H. Acute adolescent morphine exposure improves dark avoidance memory and enhances long-term potentiation of ventral hippocampal CA1 during adulthood in rats. Addict Biol 2023; 28:e13308. [PMID: 37500490 DOI: 10.1111/adb.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023]
Abstract
Adolescence represents a distinctive vulnerable period when exposure to stressful situations including opioid exposure can entail lasting effects on brain and can change neural mechanisms involved in memory formation for drug-associated cues, possibly increasing vulnerability of adolescents to addiction. Herein, the effects of acute adolescent morphine exposure (AAME, two injections of 2.5 mg/kg SC morphine on PND 31) were therefore investigated 6 weeks later (adulthood) on avoidance memory and hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in transvers slices from the ventral hippocampus in adult male rats using field recordings technique. Animal body weight was measured from PND 31 throughout PND 40 and also in four time points with 1 week intervals from adolescence to adulthood (PNDs 48, 55, 62 and 69) to evaluate the effect of AAME on the weight gain. We showed that there were no effects on body weight, anxiety-like behaviour and locomotor activity, even until adulthood. There was an improved dark avoidance memory during adulthood. Finally, AAME had no effects on baseline synaptic responses and resulted in a decrease in the mean values of the field excitatory postsynaptic potential slopes required to evoke the half-maximal population spike amplitude and an enhancement of LTP magnitude (%) in the ventral CA1 during adulthood. Briefly, our results suggest long-lasting effects of acute adolescent morphine exposure on the ventral hippocampus, which begin the enhancing of synaptic plasticity and the improving of emotional memory in adulthood.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Alaee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|