1
|
Ņikitjuka A, Žalubovskis R. Asparagusic Acid - A Unique Approach toward Effective Cellular Uptake of Therapeutics: Application, Biological Targets, and Chemical Properties. ChemMedChem 2023; 18:e202300143. [PMID: 37366073 DOI: 10.1002/cmdc.202300143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
The synthetic approaches towards unique asparagusic acid and its analogues as well as its chemical use, the breadth of its biological properties and their relevant applications have been explored. The significance of the 1,2-dithiolane ring tension in dithiol-mediated uptake and its use for the intracellular transport of molecular cargoes is discussed alongside some of the challenges that arise from the fast thiolate-disulfide interchange. The short overview with the indication of the available literature on natural 1,2-dithiolanes synthesis and biological activities is also included. The general review structure is based on the time-line perspective of the application of asparagusic acid moiety as well as its primitive derivatives (4-amino-1,2-dithiolane-4-carboxylic acid and 4-methyl-1,2-dithiolane-4-carboxilic acid) used in clinics/cosmetics, focusing on the recent research in this area and including international patents applications.
Collapse
Affiliation(s)
- Anna Ņikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
| |
Collapse
|
2
|
Wan Y, Wang W, Lai Q, Wu M, Feng S. Advances in cell-penetrating poly(disulfide)s for intracellular delivery of therapeutics. Drug Discov Today 2023:103668. [PMID: 37321318 DOI: 10.1016/j.drudis.2023.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Efficient intracellular delivery is essential for most therapeutic agents; however, existing delivery vectors face a dilemma between efficiency and toxicity, and always encounter the challenge of endolysosomal trapping. The cell-penetrating poly(disulfide) (CPD) is an effective tool for intracellular delivery, as it is taken up through thiol-mediated cellular uptake, thus avoiding endolysosomal entrapment and ensuring efficient cytosolic availability. Upon cellular uptake, CPD undergoes reductive depolymerization by glutathione inside cells and has minimal cytotoxicity. This review summarizes CPD's chemical synthesis approaches, cellular uptake mechanism, and recent advances in the intracellular delivery of proteins, antibodies, nucleic acids, and other nanoparticles. Overall, CPD is a promising candidate carrier for efficient intracellular delivery.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wangxia Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiuyue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
Hickey JC, Hurst PJ, Patterson JP, Guan Z. Facile Synthesis of Multifunctional Bioreducible Polymers for mRNA Delivery. Chemistry 2023; 29:e202203393. [PMID: 36469740 DOI: 10.1002/chem.202203393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Bioreducible polymeric mRNA carriers are an emerging family of vectors for gene delivery and vaccine development. A few bioreducible systems have been generated through aqueous-phase ring-opening polymerization of lipoic acid derivatives, however this methodology limits hydrophobic group incorporation and functionality into resulting polymers. Herein, a poly(active ester)disulfide polymer is synthesized that can undergo facile aminolysis with amine-containing substrates under stoichiometric control and mild reaction conditions to yield a library of multifunctional polydisulfide polymers. Functionalized polydisulfide polymer species form stable mRNA-polymer nanoparticles for intracellular delivery of mRNAs in vitro. Alkyl-functionalized polydisulfide-RNA nanoparticles demonstrate rapid cellular uptake and excellent biodegradability when delivering EGFP and OVA mRNAs to cells in vitro. This streamlined polydisulfide synthesis provides a new facile methodology for accessing multifunctional bioreducible polymers as biomaterials for RNA delivery and other applications.
Collapse
Affiliation(s)
- James C Hickey
- Department of Chemistry, University of California, Irvine, California, 92697, USA
| | - Paul J Hurst
- Department of Chemistry, University of California, Irvine, California, 92697, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, California, 92697, USA.,Center for Complex and Active Materials, University of California, Irvine, California, 92697, USA
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, California, 92697, USA.,Center for Complex and Active Materials, University of California, Irvine, California, 92697, USA.,Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA.,Department of Biomedical Engineering Department of Chemical and Biomolecular Engineering and Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
4
|
Tong C, Wondergem JAJ, Heinrich D, Kieltyka RE. Photopatternable, Branched Polymer Hydrogels Based on Linear Macromonomers for 3D Cell Culture Applications. ACS Macro Lett 2020; 9:882-888. [PMID: 35648521 DOI: 10.1021/acsmacrolett.0c00175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photochemical ligation strategies in hydrogel materials are crucial to model spatiotemporal phenomena that occur in the natural extracellular matrix. We here describe the use of cyclic 1,2-dithiolanes to cross-link with norbornene on linear poly(ethylene glycol) polymers through UV irradiation in a rapid and byproduct-free manner, resulting in branched macromolecular architectures and hydrogel materials from low-viscosity precursor solutions. Oscillatory rheology and NMR data indicate the one-pot formation of thioether and disulfide cross-links. Spatial and temporal control of the hydrogel mechanical properties and functionality was demonstrated by oscillatory rheology and confocal microscopy. A cytocompatible response of NIH 3T3 fibroblasts was observed within these materials, providing a foothold for further exploration of this photoactive cross-linking moiety in the biomedical field.
Collapse
Affiliation(s)
- Ciqing Tong
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O.
Box 9502, 2300 RA, Leiden, The Netherlands
| | - Joeri A. J. Wondergem
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
| | - Doris Heinrich
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Roxanne E. Kieltyka
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, P.O.
Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
5
|
Bartolami E, Basagiannis D, Zong L, Martinent R, Okamoto Y, Laurent Q, Ward TR, Gonzalez‐Gaitan M, Sakai N, Matile S. Diselenolane‐Mediated Cellular Uptake: Efficient Cytosolic Delivery of Probes, Peptides, Proteins, Artificial Metalloenzymes and Protein‐Coated Quantum Dots. Chemistry 2019; 25:4047-4051. [DOI: 10.1002/chem.201805900] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/29/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Eline Bartolami
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Dimitris Basagiannis
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
| | - Lili Zong
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- Current Address: School of Chemistry and Chemical EngineeringSoutheast University Nanjing 210096 China
| | - Rémi Martinent
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
| | - Yasunori Okamoto
- Department of ChemistryUniversity of Basel Basel Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Quentin Laurent
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of Basel Basel Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Marcos Gonzalez‐Gaitan
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR) Chemical Biology, School of Chemistry and BiochemistryUniversity of Geneva CH-1211 Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering CH-4002 Basel Switzerland
| |
Collapse
|
6
|
Kohata A, Hashim PK, Okuro K, Aida T. Transferrin-Appended Nanocaplet for Transcellular siRNA Delivery into Deep Tissues. J Am Chem Soc 2019; 141:2862-2866. [DOI: 10.1021/jacs.8b12501] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - P. K. Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Donnelly DP, Agar J, Lopez SA. Nucleophilic substitution reactions of cyclic thiosulfinates are accelerated by hyperconjugative interactions. Chem Sci 2019. [DOI: 10.1039/c9sc01098j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyclic thiosulfinates are a class of biocompatible molecules, currently expanding our in vivo toolkit.
Collapse
Affiliation(s)
- Daniel P. Donnelly
- Department of Chemistry and Chemical Biology
- Northeastern University
- Boston
- USA
- Barnett Institute of Chemical and Biological Analysis
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology
- Northeastern University
- Boston
- USA
- Barnett Institute of Chemical and Biological Analysis
| | - Steven A. Lopez
- Department of Chemistry and Chemical Biology
- Northeastern University
- Boston
- USA
| |
Collapse
|
8
|
Strakova K, Soleimanpour S, Diez-Castellnou M, Sakai N, Matile S. Ganglioside-Selective Mechanosensitive Fluorescent Membrane Probes. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Saeideh Soleimanpour
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Marta Diez-Castellnou
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Quai Ernest Ansermet 30 CH-1211 Geneva 4 Switzerland
| |
Collapse
|
9
|
Macchione M, Tsemperouli M, Goujon A, Mallia AR, Sakai N, Sugihara K, Matile S. Mechanosensitive Oligodithienothiophenes: Transmembrane Anion Transport Along Chalcogen-Bonding Cascades. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mariano Macchione
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Maria Tsemperouli
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Antoine Goujon
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Ajith R. Mallia
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Kaori Sugihara
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry; National Centre of Competence in Research (NCCR) Chemical Biology; University of Geneva; Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
10
|
Morelli P, Bartolami E, Sakai N, Matile S. Glycosylated Cell‐Penetrating Poly(disulfide)s: Multifunctional Cellular Uptake at High Solubility. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paola Morelli
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| | - Eline Bartolami
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| |
Collapse
|
11
|
Chuard N, Poblador-Bahamonde AI, Zong L, Bartolami E, Hildebrandt J, Weigand W, Sakai N, Matile S. Diselenolane-mediated cellular uptake. Chem Sci 2018; 9:1860-1866. [PMID: 29675232 PMCID: PMC5892345 DOI: 10.1039/c7sc05151d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Selenophilicity, minimized dihedral angles, acidic selenols, multitarget hopping: cytosolic delivery with 1,2-diselenolanes outperforms 1,2-dithiolanes, by far.
The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.
Collapse
Affiliation(s)
- Nicolas Chuard
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Amalia I Poblador-Bahamonde
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Lili Zong
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Eline Bartolami
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Jana Hildebrandt
- Institute of Inorganic and Analytical Chemistry , Friedrich-Schiller University Jena , Germany
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry , Friedrich-Schiller University Jena , Germany
| | - Naomi Sakai
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| |
Collapse
|
12
|
Margulis K, Zhang X, Joubert L, Bruening K, Tassone CJ, Zare RN, Waymouth RM. Formation of Polymeric Nanocubes by Self‐Assembly and Crystallization of Dithiolane‐Containing Triblock Copolymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Xiangyi Zhang
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Karsten Bruening
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Christopher J. Tassone
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | |
Collapse
|
13
|
Margulis K, Zhang X, Joubert L, Bruening K, Tassone CJ, Zare RN, Waymouth RM. Formation of Polymeric Nanocubes by Self‐Assembly and Crystallization of Dithiolane‐Containing Triblock Copolymers. Angew Chem Int Ed Engl 2017; 56:16357-16362. [DOI: 10.1002/anie.201709564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xiangyi Zhang
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Karsten Bruening
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Christopher J. Tassone
- Stanford Synchrotron Radiation Lightsource Stanford University 2575 Sand Hill Road, MS 69 Menlo Park CA 94025 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | |
Collapse
|