1
|
Ma S, Tang L, Tang H, Wu C, Pu X, Yang J, Niu N. WT1 and DNMT3A Mutations in Prognostic Significance of Acute Myeloid Leukemia: A Meta-Analysis. Cancer Biother Radiopharm 2025; 40:22-30. [PMID: 39207267 DOI: 10.1089/cbr.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background: Adult acute leukemia most commonly manifests as acute myeloid leukemia (AML), a highly heterogeneous malignant tumor of the blood system. The application of genetic diagnostic technology is currently prevalent in numerous clinical sectors. According to recent research, the presence of specific gene mutations or rearrangements in leukemia cells is the primary cause of the disease. As different types of leukemia are caused by atypical mutated genes, testing for these mutations or rearrangements can help diagnose leukemia and identify the disease's molecular targets for treatment. Methods: Using the search fields "WT1," "DNMT3A," "Acute myeloid leukemia," and "survival," the CBM, Cochrane Library, Scopus, EMBASE, and PUBMED databases were separately reviewed. The methodology for evaluating the risk of bias developed by the Cochrane Collaboration was used in conjunction with a methodical evaluation of pertinent literature. Excluded studies with the following characteristics: (1) incomplete and repetitive publications, (2) unable to retrieve or convert data, (3) non-English or Chinese articles. Results: This analysis included 13 studies covering a total of 3478 subjects. The frequency of Wilms' Tumor 1 (WT1) mutations is 6.7%-35.73%, and the frequency of DNMT3A mutations is 12.06%-51.1%. The remission rate of patients with WT1 mutations was less than that of patients without WT1 mutations (OR = 0.22; 95% confidence interval [CI]: 0.14, 0.36; p < 0.00001; I2 = 55%). The DNMT3A mutation has no statistical significance for the prognosis of AML (OR = 1.21; 95% CI: 0.93, 1.58; p = 0.16; I2 = 80%). After removing one study, the heterogeneity of the indicator (mitigation rate) among other studies of DNMT3A mutation was dramatically reduced (OR = 0.63; 95% CI: 0.43, 0.93; p = 0.02; I2 = 0%). Conclusions: Our meta-analysis shows that WT1 mutations hurt the remission rate of AML. Moreover, the impact of DNMT3A mutations on AML needs to be treated with caution. Gene diagnosis is critical for the prognosis and clinical management of AML.
Collapse
Affiliation(s)
- Shiyue Ma
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Lingjian Tang
- Department of Rehabilitative Medicine, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Hui Tang
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Chaoli Wu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xue Pu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jun Yang
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ninhong Niu
- Department of Medical Administration, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
2
|
Víctor GG, Nerea M, Beatriz RC, Paula VS, Bárbara OF, Pilar GG, Alicia PS, Jordi M, Berta G, Isabel MR, Sonsoles SRP, Pablo EM, Adrián IN, Antonio PM, Adela EL. Advanced Molecular Characterisation in Relapsed and Refractory Paediatric Acute Leukaemia, the Key for Personalised Medicine. J Pers Med 2022; 12:881. [PMID: 35743666 PMCID: PMC9224967 DOI: 10.3390/jpm12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023] Open
Abstract
Relapsed and refractory (R/r) disease in paediatric acute leukaemia remains the first reason for treatment failure. Advances in molecular characterisation can ameliorate the identification of genetic biomarkers treatment strategies for this disease, especially in high-risk patients. The purpose of this study was to analyse a cohort of R/r children diagnosed with acute lymphoblastic (ALL) or myeloid (AML) leukaemia in order to offer them a targeted treatment if available. Advanced molecular characterisation of 26 patients diagnosed with R/r disease was performed using NGS, MLPA, and RT-qPCR. The clinical relevance of the identified alterations was discussed in a multidisciplinary molecular tumour board (MTB). A total of 18 (69.2%) patients were diagnosed with B-ALL, 4 (15.4%) with T-ALL, 3 (11.5%) with AML and 1 patient (3.8%) with a mixed-phenotype acute leukaemia (MPL). Most of the patients had relapsed disease (88%) at the time of sample collection. A total of 17 patients (65.4%) were found to be carriers of a druggable molecular alteration, 8 of whom (47%) received targeted therapy, 7 (87.5%) of them in addition to hematopoietic stem cell transplantation (HSCT). Treatment response and disease control were achieved in 4 patients (50%). In conclusion, advanced molecular characterisation and MTB can improve treatment and outcome in paediatric R/r acute leukaemias.
Collapse
Affiliation(s)
- Galán-Gómez Víctor
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Matamala Nerea
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Ruz-Caracuel Beatriz
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Valle-Simón Paula
- Clinical Pharmacology Department, La Paz University Hospital, 28046 Madrid, Spain;
| | - Ochoa-Fernández Bárbara
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Guerra-García Pilar
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Pernas-Sánchez Alicia
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - Minguillón Jordi
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| | - González Berta
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Martínez-Romera Isabel
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - San Román-Pacheco Sonsoles
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
| | - Estival-Monteliú Pablo
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Ibáñez-Navarro Adrián
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Pérez-Martínez Antonio
- Paediatric Haemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (G.-G.V.); (O.-F.B.); (G.-G.P.); (G.B.); (M.-R.I.); (S.R.-P.S.); (P.-M.A.)
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain; (E.-M.P.); (I.-N.A.)
| | - Escudero-López Adela
- Genetics Department (INGEMM), La Paz University Hospital, 28046 Madrid, Spain; (M.N.); (R.-C.B.); (P.-S.A.); (M.J.)
| |
Collapse
|
3
|
Survivin' Acute Myeloid Leukaemia-A Personalised Target for inv(16) Patients. Int J Mol Sci 2021; 22:ijms221910482. [PMID: 34638823 PMCID: PMC8508831 DOI: 10.3390/ijms221910482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
Despite recent advances in therapies including immunotherapy, patients with acute myeloid leukaemia (AML) still experience relatively poor survival rates. The Inhibition of Apoptosis (IAP) family member, survivin, also known by its gene and protein name, Baculoviral IAP Repeat Containing 5 (BIRC5), remains one of the most frequently expressed antigens across AML subtypes. To better understand its potential to act as a target for immunotherapy and a biomarker for AML survival, we examined the protein and pathways that BIRC5 interacts with using the Kyoto Encyclopedia of Genes and Genomes (KEGG), search tool for recurring instances of neighbouring genes (STRING), WEB-based Gene Set Analysis Toolkit, Bloodspot and performed a comprehensive literature review. We then analysed data from gene expression studies. These included 312 AML samples in the Microarray Innovations In Leukemia (MILE) dataset. We found a trend between above median levels of BIRC5 being associated with improved overall survival (OS) but this did not reach statistical significance (p = 0.077, Log-Rank). There was some evidence of a beneficial effect in adjusted analyses where above median levels of BIRC5 were shown to be associated with improved OS (p = 0.001) including in Core Binding Factor (CBF) patients (p = 0.03). Above median levels of BIRC5 transcript were associated with improved relapse free survival (p < 0.0001). Utilisation of a second large cDNA microarray dataset including 306 AML cases, again showed no correlation between BIRC5 levels and OS, but high expression levels of BIRC5 correlated with worse survival in inv(16) patients (p = 0.077) which was highly significant when datasets A and B were combined (p = 0.001). In addition, decreased BIRC5 expression was associated with better clinical outcome (p = 0.004) in AML patients exhibiting CBF mainly due to patients with inv(16) (p = 0.007). This study has shown that BIRC5 expression plays a role in the survival of AML patients, this association is not apparent when we examine CBF patients as a cohort, but when those with inv(16) independently indicating that those patients with inv(16) would provide interesting candidates for immunotherapies that target BIRC5.
Collapse
|
4
|
Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13184519. [PMID: 34572745 PMCID: PMC8469736 DOI: 10.3390/cancers13184519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a type of blood cancer with an extremely grim prognosis. This is due to the fact that the majority of patients will relapse after frontline treatment. Overall survival of relapsed AML is very low, and treatment options are few. T lymphocytes harnessed with antitumor T-cell receptors (TCRs) can produce objective clinical responses in certain cancers, such as melanoma, but have not entered the main road for AML. In this review, we describe the current status of the field of TCR-T-cell therapies for AML. Abstract Despite the advent of novel therapies, acute myeloid leukemia (AML) remains associated with a grim prognosis. This is exemplified by 5-year overall survival rates not exceeding 30%. Even with frontline high-intensity chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the majority of patients with AML will relapse. For these patients, treatment options are few, and novel therapies are urgently needed. Adoptive T-cell therapies represent an attractive therapeutic avenue due to the intrinsic ability of T lymphocytes to recognize tumor cells with high specificity and efficiency. In particular, T-cell therapies focused on introducing T-cell receptors (TCRs) against tumor antigens have achieved objective clinical responses in solid tumors such as synovial sarcoma and melanoma. However, contrary to chimeric antigen receptor (CAR)-T cells with groundbreaking results in B-cell malignancies, the use of TCR-T cells for hematological malignancies is still in its infancy. In this review, we provide an overview of the status and clinical advances in adoptive TCR-T-cell therapy for the treatment of AML.
Collapse
|
5
|
Bedair HM, Attia MH, Gohar SF, Khalaf FM, Badr El-DIN S, Rabie H. The prognostic impact of Wilms tumor-1 polymorphism (rs16754) and human myeloid inhibitory C-type lectin-like receptor expression in cytogenetically normal-acute myeloid leukemia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
There are several genetic mutations that carry prognostic and predictive values in acute myeloid leukemia (AML). They are also implicated in disease pathogenesis and patient outcome. They can be a target of novel therapies for AML. The aim of the current study was to investigate prognostic value of Wilms’ tumor-1 (WT1) genotypes and human myeloid inhibitory C-type lectin-like (hMICL) receptor expression in normal-cytogenetic group of patients with AML. Genotyping of WT1 mutations was done by Rotor Gene real-time polymerase chain reaction (PCR) while hMICL expression was detected using phycoerythrin (PE)-conjugated mouse monoclonal anti-human (MoAbs) by flow cytometry.
Results
Sixty-three patients with cytogenetically normal AML (CN-AML) were included in the study. The alternate allele of WT1 single nucleotide polymorphism (SNP) rs16754 was found in 26.89%. At day 28 of therapy, complete remission was achieved in 100% of cases harboring mutant AG plus GG genotypes but only in 6.38% of cases harboring wild genotype (AA). After 6 months, 88.23% of patients harboring WT1 mutant genotype maintained complete remission, while only 23.40% of patients with wild type showed complete remission. The overall survival in patients harboring mutant WT1 genotypes was significantly longer than in those who carried the wild type gene (P-value, 0.001). Additionally, hMICL was overexpressed in approximately 87.3% of AML cases and inversely related to complete response. Similarly, overall survival was significantly shorter in patients with positive hMICL (P-value, 0.001).
Conclusion
Mutant WT1 genotypes (SNP rs16754) were conversely, associated with complete response, and hMICL overexpression had poor prognostic value in AML.
Collapse
|
6
|
Wang Y, Weng WJ, Zhou DH, Fang JP, Mishra S, Chai L, Xu LH. Wilms Tumor 1 Mutations Are Independent Poor Prognostic Factors in Pediatric Acute Myeloid Leukemia. Front Oncol 2021; 11:632094. [PMID: 33968731 PMCID: PMC8096913 DOI: 10.3389/fonc.2021.632094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The prognostic impact of Wilms tumor 1 (WT1) mutations remains controversial for patients with acute myeloid leukemia (AML). Here, we aimed to determine the clinical implication of WT1 mutations in a large cohort of pediatric AML. The clinical data of 870 pediatric patients with AML were downloaded from the therapeutically applicable research to generate effective treatment (TARGET) dataset. We analyzed the prevalence, clinical profile, and prognosis of AML patients with WT1 mutations in this cohort. Our results showed that 6.7% of total patients harbored WT1 mutations. These WT1 mutations were closely associated with normal cytogenetics (P<0.001), FMS-like tyrosine kinase 3/internal tandem duplication (FLT3/ITD) mutations (P<0.001), and low complete remission induction rates (P<0.01). Compared to the patients without WT1 mutations, patients with WT1 mutations had a worse 5-year event-free survival (21.7 ± 5.5% vs 48.9 ± 1.8%, P<0.001) and a worse overall survival (41.4 ± 6.6% vs 64.3 ± 1.7%, P<0.001). Moreover, patients with both WT1 and FLT3/ITD mutations had a dismal prognosis. Compared to chemotherapy alone, hematopoietic stem cell transplantation tended to improve the prognoses of WT1-mutated patients. Multivariate analysis demonstrated that WT1 mutations conferred an independent adverse impact on event-free survival (hazard ratio 1.910, P = 0.001) and overall survival (hazard ratio 1.709, P = 0.020). In conclusion, our findings have demonstrated that WT1 mutations are independent poor prognostic factors in pediatric AML.
Collapse
Affiliation(s)
- Yin Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Weng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dun-Hua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Pei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Srishti Mishra
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Chai
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Mutated WT1, FLT3-ITD, and NUP98-NSD1 Fusion in Various Combinations Define a Poor Prognostic Group in Pediatric Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:1609128. [PMID: 31467532 PMCID: PMC6699323 DOI: 10.1155/2019/1609128] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in the WT1 gene and NUP98-NSD1 fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem duplications of the juxta-membrane domain of FLT3 (FLT3-ITD). To re-evaluate the effect of these factors in contemporary protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included. Presence of mutated WT1 and FLT3-ITD in blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival of 33% compared to rates of 45-63% and 67-87% in patients with only one (only FLT3-ITD; n=33, only WT1 mutation; n=29) or none of these mutations (n=272). Including NUP98-NSD1 and high allelic ratio (AR) of FLT3-ITD (AR ≥0.4) in the analysis revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients (n=15) experienced events and the probability of overall survival was low (27%). We conclude that co-occurrence of WT1 mutation, NUP98-NSD1, and FLT3-ITD with an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first- and second-line treatment for pediatric acute myeloid leukemia.
Collapse
|
8
|
Shin SY, Lee ST, Kim HJ, Cho EH, Kim JW, Park S, Jung CW, Kim SH. Mutation profiling of 19 candidate genes in acute myeloid leukemia suggests significance of DNMT3A mutations. Oncotarget 2018; 7:54825-54837. [PMID: 27359055 PMCID: PMC5342384 DOI: 10.18632/oncotarget.10240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
We selected 19 significantly-mutated genes in AMLs, including FLT3, DNMT3A, NPM1, TET2, RUNX1, CEBPA, WT1, IDH1, IDH2, NRAS, ASXL1, SETD2, PTPN11, TP53, KIT, JAK2, KRAS, BRAF and CBL, and performed massively parallel sequencing for 114 patients with acute myeloid leukemias, mainly including those with normal karyotypes (CN-AML). More than 80% of patients had at least one mutation in the genes tested. DNMT3A mutation was significantly associated with adverse outcome in addition to conventional risk stratification such as the European LeukemiaNet (ELN) classification. We observed clinical usefulness of mutation testing on multiple target genes and the association with disease subgroups, clinical features and prognosis in AMLs.
Collapse
Affiliation(s)
- Sang-Yong Shin
- Department of Laboratory Medicine, Center for Diagnostic Oncology, Hospital and Research Institute, National Cancer Center, Goyang, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jong-Won Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Silvia Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Zhu YM, Wang PP, Huang JY, Chen YS, Chen B, Dai YJ, Yan H, Hu Y, Cheng WY, Ma TT, Chen SJ, Shen Y. Gene mutational pattern and expression level in 560 acute myeloid leukemia patients and their clinical relevance. J Transl Med 2017; 15:178. [PMID: 28830460 PMCID: PMC5568401 DOI: 10.1186/s12967-017-1279-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Cytogenetic aberrations and gene mutations have long been regarded as independent prognostic markers in AML, both of which can lead to misexpression of some key genes related to hematopoiesis. It is believed that the expression level of the key genes is associated with the treatment outcome of AML. Methods In this study, we analyzed the clinical features and molecular aberrations of 560 newly diagnosed non-M3 AML patients, including mutational status of CEBPA, NPM1, FLT3, C-KIT, NRAS, WT1, DNMT3A, MLL-PTD and IDH1/2, as well as expression levels of MECOM, ERG, GATA2, WT1, BAALC, MEIS1 and SPI1. Results Certain gene expression levels were associated with the cytogenetic aberration of the disease, especially for MECOM, MEIS1 and BAALC. FLT3, C-KIT and NRAS mutations contained conversed expression profile regarding MEIS1, WT1, GATA2 and BAALC expression, respectively. FLT3, DNMT3A, NPM1 and biallelic CEBPA represented the mutations associated with the prognosis of AML in our group. Higher MECOM and MEIS1 gene expression levels showed a significant impact on complete remission (CR) rate, disease free survival (DFS) and overall survival (OS) both in univariate and multivariate analysis, respectively; and an additive effect could be observed. By systematically integrating gene mutational status results and gene expression profile, we could establish a more refined system to precisely subdivide AML patients into distinct prognostic groups. Conclusions Gene expression abnormalities contained important biological and clinical informations, and could be integrated into current AML stratification system. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1279-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong-Mei Zhu
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Pan-Pan Wang
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Jin-Yan Huang
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Yun-Shuo Chen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Bing Chen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Yu-Jun Dai
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Han Yan
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Yi Hu
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Wen-Yan Cheng
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Ting-Ting Ma
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Sai-Juan Chen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China.
| | - Yang Shen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China.
| |
Collapse
|
10
|
Nilsson HJ, Montano G, Ullmark T, Lennartsson A, Drott K, Järvstråt L, Nilsson B, Vidovic K, Gullberg U. The transcriptional coregulator NAB2 is a target gene for the Wilms' tumor gene 1 protein (WT1) in leukemic cells. Oncotarget 2017; 8:87136-87150. [PMID: 29152069 PMCID: PMC5675621 DOI: 10.18632/oncotarget.19896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
The Wilms’ tumor gene 1 (WT1) is recurrently mutated in acute myeloid leukemia. Mutations and high expression of WT1 associate with a poor prognosis. In mice, WT1 cooperates with the RUNX1/RUNX1T1 (AML1/ETO) fusion gene in the induction of acute leukemia, further emphasizing a role for WT1 in leukemia development. Molecular mechanisms for WT1 are, however, incompletely understood. Here, we identify the transcriptional coregulator NAB2 as a target gene of WT1. Analysis of gene expression profiles of leukemic samples revealed a positive correlation between the expression of WT1 and NAB2, as well as a non-zero partial correlation. Overexpression of WT1 in hematopoietic cells resulted in increased NAB2 levels, while suppression of WT1 decreased NAB2 expression. WT1 bound and transactivated the proximal NAB2 promoter, as shown by ChIP and reporter experiments, respectively. ChIP experiments also revealed that WT1 can recruit NAB2 to the IRF8 promoter, thus modulating the transcriptional activity of WT1, as shown by reporter experiments. Our results implicate NAB2 as a previously unreported target gene of WT1 and that NAB2 acts as a transcriptional cofactor of WT1.
Collapse
Affiliation(s)
- Helena Jernmark Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Giorgia Montano
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Tove Ullmark
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Kristina Drott
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linnea Järvstråt
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karina Vidovic
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Urban Gullberg
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Ullmark T, Järvstråt L, Sandén C, Montano G, Jernmark-Nilsson H, Lilljebjörn H, Lennartsson A, Fioretos T, Drott K, Vidovic K, Nilsson B, Gullberg U. Distinct global binding patterns of the Wilms tumor gene 1 (WT1) -KTS and +KTS isoforms in leukemic cells. Haematologica 2016; 102:336-345. [PMID: 27612989 DOI: 10.3324/haematol.2016.149815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/05/2016] [Indexed: 12/29/2022] Open
Abstract
The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 -KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia.
Collapse
Affiliation(s)
- Tove Ullmark
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Linnea Järvstråt
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Carl Sandén
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Giorgia Montano
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Helena Jernmark-Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Kristina Drott
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Karina Vidovic
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| | - Urban Gullberg
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Huddinge, Sweden
| |
Collapse
|
12
|
Abstract
Wilms' tumor-1 protein (WT1) is a transcription factor that can either activate or repress genes to regulate cell growth, apoptosis and differentiation. WT1 can act as either a tumor suppressor or an oncogene. The cellular functions of WT1 are predominantly regulated by its various interacting partners. Recently we have found that WT1 can regulate the fidelity of chromosome segregation through its interaction with the spindle assembly checkpoint protein, Mitotic arrest deficient-2 (MAD2). WT1 delays anaphase entry by inhibiting the ubiquitination activity of the Anaphase promoting complex/cyclosome (APC/C). Our findings have revealed an important role of WT1 in the regulation of mitotic checkpoint and genomic stability.
Collapse
Affiliation(s)
- Jayasha Shandilya
- a Department of Biological Sciences ; University at Buffalo ; Buffalo , NY USA
| | | |
Collapse
|
13
|
Wang BH, Li YH, Yu L. Genomics-based Approach and Prognostic Stratification Significance of Gene Mutations in Intermediate-risk Acute Myeloid Leukemia. Chin Med J (Engl) 2015; 128:2395-403. [PMID: 26315090 PMCID: PMC4733808 DOI: 10.4103/0366-6999.163400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Intermediate-risk acute myeloid leukemia (IR-AML), which accounts for a substantial number of AML cases, is highly heterogeneous. We systematically summarize the latest research progress on the significance of gene mutations for prognostic stratification of IR-AML. DATA SOURCES We conducted a systemic search from the PubMed database up to October, 2014 using various search terms and their combinations including IR-AML, gene mutations, mutational analysis, prognosis, risk stratification, next generation sequencing (NGS). STUDY SELECTION Clinical or basic research articles on NGS and the prognosis of gene mutations in IR-AML were included. RESULTS The advent of the era of whole-genome sequencing has led to the discovery of an increasing number of molecular genetics aberrations that involved in leukemogenesis, and some of them have been used for prognostic risk stratification. Several studies have consistently identified that some gene mutations have prognostic relevance, however, there are still many controversies for some genes because of lacking sufficient evidence. In addition, tumor cells harbor hundreds of mutated genes and multiple mutations often coexist, therefore, single mutational analysis is not sufficient to make accurate prognostic predictions. The comprehensive analysis of multiple mutations based on sophisticated genomic technologies has raised increasing interest in recent years. CONCLUSIONS NGS represents a pioneering and helpful approach to prognostic risk stratification of IR-AML patients. Further large-scale studies for comprehensive molecular analysis are needed to provide guidance and a theoretical basis for IR-AML prognostic stratification and clinical management.
Collapse
Affiliation(s)
| | | | - Li Yu
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853; Department of Clinical Medicine, Tsinghua University School of Medicine, Medical Center, Beijing 100084, China
| |
Collapse
|
14
|
Kühnl A, Valk PJM, Sanders MA, Ivey A, Hills RK, Mills KI, Gale RE, Kaiser MF, Dillon R, Joannides M, Gilkes A, Haferlach T, Schnittger S, Duprez E, Linch DC, Delwel R, Löwenberg B, Baldus CD, Solomon E, Burnett AK, Grimwade D. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood 2015; 125:2985-94. [PMID: 25805812 PMCID: PMC4463809 DOI: 10.1182/blood-2014-12-613703] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle
- Cohort Studies
- DNA Methylation
- DNA-Binding Proteins
- Down-Regulation
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Immunoenzyme Techniques
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Mutation/genetics
- Oligonucleotide Array Sequence Analysis
- Prognosis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Wnt Proteins/antagonists & inhibitors
- Young Adult
Collapse
Affiliation(s)
- Andrea Kühnl
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom; Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Robert K Hills
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Rosemary E Gale
- Department of Haematology, University College London, London, United Kingdom
| | - Martin F Kaiser
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Melanie Joannides
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Amanda Gilkes
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | | | - Estelle Duprez
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique UMR7258, Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - David C Linch
- Department of Haematology, University College London, London, United Kingdom
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claudia D Baldus
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ellen Solomon
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Alan K Burnett
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| |
Collapse
|
15
|
Aref S, El Sharawy S, Sabry M, Azmy E, Raouf DA. Prognostic relevance of Wilms tumor 1 (WT1) gene Exon 7 mutations in-patient with cytogenetically normal acute myeloid leukemia. Indian J Hematol Blood Transfus 2014; 30:226-30. [PMID: 25435718 DOI: 10.1007/s12288-013-0288-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/11/2013] [Indexed: 10/26/2022] Open
Abstract
This study aimed to assess the prognostic influences of Wilms tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML) among Egyptian patients. Exon 7 of WT1 was screened for mutations in samples from 82 CN-AML patients out of 203 newly diagnosed AML patients, using a high-resolution capillary electrophoresis. Seven out of 82 AML patients (8.3 %) harbored WT1 mutations. There was no significant difference between the mutant WT1 and wild type AML patients as regard age, sex, French-American-British subtypes and the prevalence of success of induction remission therapy (P < 0.5). AML patients with mutant WT1 had shorter overall survival as compared to those patients with wild WT1 (HR = 1.38; 95 % CI 4.79-6.86; P = 0.004). In conclusion, CN-AML patients with WT1 gene mutation have poor clinical outcome. We recommend testing the WT1 mutations as part of molecularly based risk assessment and risk-adapted treatment stratification of patients with CN-AML.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Solafa El Sharawy
- Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Mohamed Sabry
- Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Emad Azmy
- Clinical Hematology Unit, Mansoura Cancer Institute, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Dalia Abdel Raouf
- Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
16
|
High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. Blood 2012; 119:e67-75. [PMID: 22234698 DOI: 10.1182/blood-2011-09-380444] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To identify cooperating lesions in core-binding factor acute myeloid leukemia, we performed single-nucleotide polymorphism-array analysis on 300 diagnostic and 41 relapse adult and pediatric leukemia samples. We identified a mean of 1.28 copy number alterations per case at diagnosis in both patient populations. Recurrent minimally deleted regions (MDRs) were identified at 7q36.1 (7.7%), 9q21.32 (5%), 11p13 (2.3%), and 17q11.2 (2%). Approximately one-half of the 7q deletions were detectable only by single-nucleotide polymorphism-array analysis because of their limited size. Sequence analysis of MLL3, contained within the 7q36.1 MDR, in 46 diagnostic samples revealed one truncating mutation in a leukemia lacking a 7q deletion. Recurrent focal gains were identified at 8q24.21 (4.7%) and 11q25 (1.7%), both containing a single noncoding RNA. Recurrent regions of copy-neutral loss-of-heterozygosity were identified at 1p (1%), 4q (0.7%), and 19p (0.7%), with known mutated cancer genes present in the minimally altered region of 1p (NRAS) and 4q (TET2). Analysis of relapse samples identified recurrent MDRs at 3q13.31 (12.2%), 5q (4.9%), and 17p (4.9%), with the 3q13.31 region containing only LSAMP, a putative tumor suppressor. Determining the role of these lesions in leukemogenesis and drug resistance should provide important insights into core-binding factor acute myeloid leukemia.
Collapse
|
17
|
Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol 2011; 4:36. [PMID: 21917154 PMCID: PMC3180439 DOI: 10.1186/1756-8722-4-36] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022] Open
Abstract
The development of acute myeloid leukemia (AML) is a multistep process that requires at least two genetic abnormalities for the development of the disease. The identification of genetic mutations in AML has greatly advanced our understanding of leukemogenesis. Recently, the use of novel technologies, such as massively parallel DNA sequencing or high-resolution single-nucleotide polymorphism arrays, has allowed the identification of several novel recurrent gene mutations in AML. The aim of this review is to summarize the current findings for the identification of these gene mutations (Dnmt, TET2, IDH1/2, NPM1, ASXL1, etc.), most of which are frequently found in cytogenetically normal AML. The cooperative interactions of these molecular aberrations and their interactions with class I/II mutations are presented. The prognostic and predictive significances of these aberrations are also reviewed.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences and Division of Hematology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Japan.
| |
Collapse
|
18
|
Abstract
Wilms' tumour is a paediatric malignancy of the kidneys and is one of the most common solid childhood cancers. The Wilms' tumour 1 protein (WT1) is a transcription factor that can either activate or repress genes involved in growth, apoptosis and differentiation. It is frequently mutated or aberrantly expressed in Wilms' tumour, where the wild type protein would normally act as a tumour suppressor. Several studies, however, have found that wild type WT1 acts as an oncogene in adult tumours, primarily through the inhibition of apoptosis. The expression of WT1 correlates with the aggressiveness of several adult cancers, and its continued expression following treatment is indicative of a poor outcome.We recently found that the treatment of tumour cell lines with cytotoxic drugs leads to the cleavage of WT1 by the serine protease HtrA2. HtrA2 binds to a specific region of WT1, the suppression domain, and then cleaves WT1 at multiple sites. The HtrA2-mediated proteolysis of WT1 leads to its removal from gene promoter regions and changes in gene expression. Cleavage of WT1 by HtrA2 enhances apoptosis. This event is advantageous to the treatment of adult tumours where WT1 acts as an oncogene. However, when WT1 is acting as a tumour suppressor in paediatric malignancies, proteolysis by HtrA2 would be antagonistic to therapy.
Collapse
Affiliation(s)
- Jörg Hartkamp
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Manchester, UK
| | | |
Collapse
|
19
|
Ritchie MF, Zhou Y, Soboloff J. WT1/EGR1-mediated control of STIM1 expression and function in cancer cells. Front Biosci (Landmark Ed) 2011; 16:2402-15. [PMID: 21622185 DOI: 10.2741/3862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There have been numerous publications linking Ca(2+) signaling and cancer, however, a clear explanation for this link has remained elusive. We recently identified the oncogenes/tumor suppressors Wilms Tumor Suppressor 1 (WT1) and Early Growth Response 1 (EGR1) as regulators of the expression of STIM1, an essential regulator of Ca(2+) entry in non-excitable cells. The current review focuses on the literature defining both differential Ca(2+) signaling and WT1/EGR1 expression patterns in 6 specific cancer subtypes: Acute Myeloid Leukemia, Wilms Tumor, breast cancer, ovarian cancer, glioblastoma and prostate cancer. For each tumor-type, we have assessed how specific changes in WT1 and EGR1 expression might contribute to aberrant Ca(2+) homeostasis as well as the therapeutic potential of these observations.
Collapse
Affiliation(s)
- Michael F Ritchie
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|