1
|
Soğukpınar M, Karaosmanoğlu B, Utine GE, Boduroğlu K, Şimşek-Kiper PÖ. A Novel ZBTB20 Variant in a Patient with Primrose Syndrome: A Rare Clinical Entity with Distinctive Features. Mol Syndromol 2024; 15:347-354. [PMID: 39129839 PMCID: PMC11316443 DOI: 10.1159/000537952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Primrose syndrome (PS; MIM #259050) is a rare autosomal dominant genetic condition characterized by macrocephaly with or without tall stature, hypotonia, moderate to severe intellectual disability (ID) with delay in expressive speech development, behavioral abnormalities, and a recognizable facial phenotype including deep set eyes, ptosis, narrow and frequently downslanting palpebral fissures, and depressed nasal bridge. PS is caused by a heterozygous pathogenic variant in ZBTB20 (MIM #606025) on chromosome 3q13. Among other characteristic findings are ocular abnormalities, hearing loss, calcification of the external ear cartilage, nonspecific brain magnetic resonance imaging findings, and cryptorchidism. Adults may exhibit joint contractures, distal muscle wasting, sparse body hair, cataract, and disturbed glucose metabolism as well. The majority of affected individuals have typically been adults until recently since the phenotype becomes more recognizable in time. Case Presentation In this study, we report on a 14-month-old girl who presented with neurodevelopmental findings, facial features, and hearing loss. The glucose metabolism was normal, and muscle atrophy, joint contractures, and external ear cartilage calcification were yet hitherto not evident. A novel de novo missense variant in ZBTB20 was identified with the aid of exome sequencing. Conclusion PS is a rare clinical entity with various recognizable features, yet the phenotype may be indistinguishable from other neurodevelopmental disorders. Exome sequencing is a useful diagnostic tool especially in patients with no specific diagnosis despite detailed examinations and imaging studies.
Collapse
Affiliation(s)
- Merve Soğukpınar
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoğlu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gülen Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Koray Boduroğlu
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
2
|
Rafique I, Mir A, Siddiqui S, Saqib MAN, Fawwad A, Marchand L, Adnan M, Naeem M, Basit A, Polychronakos C. Comprehensive genetic screening reveals wide spectrum of genetic variants in monogenic forms of diabetes among Pakistani population. World J Diabetes 2021; 12:1957-1966. [PMID: 34888019 PMCID: PMC8613659 DOI: 10.4239/wjd.v12.i11.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Monogenic forms of diabetes (MFD) are single gene disorders. Their diagnosis is challenging, and symptoms overlap with type 1 and type 2 diabetes.
AIM To identify the genetic variants responsible for MFD in the Pakistani population and their frequencies.
METHODS A total of 184 patients suspected of having MFD were enrolled. The inclusion criterion was diabetes with onset below 25 years of age. Brief demographic and clinical information were taken from the participants. The maturity-onset diabetes of the young (MODY) probability score was calculated, and glutamate decarboxylase ELISA was performed. Antibody negative patients and features resembling MODY were selected (n = 28) for exome sequencing to identify the pathogenic variants.
RESULTS A total of eight missense novel or very low-frequency variants were identified in 7 patients. Three variants were found in genes for MODY, i.e. HNF1A (c.169C>A, p.Leu57Met), KLF11 (c.401G>C, p.Gly134Ala), and HNF1B (c.1058C>T, p.Ser353Leu). Five variants were found in genes other than the 14 known MODY genes, i.e. RFX6 (c.919G>A, p.Glu307Lys), WFS1 (c.478G>A, p.Glu160Lys) and WFS1 (c.517G>A, p.Glu173Lys), RFX6 (c.1212T>A, p.His404Gln) and ZBTB20 (c.1049G>A, p.Arg350His).
CONCLUSION The study showed wide spectrum of genetic variants potentially causing MFD in the Pakistani population. The MODY genes prevalent in European population (GCK, HNF1A, and HNF4a) were not found to be common in our population. Identification of novel variants will further help to understand the role of different genes causing the pathogenicity in MODY patient and their proper management and diagnosis.
Collapse
Affiliation(s)
- Ibrar Rafique
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
- Research Development and Coordination, Pakistan Health Research Council, Islamabad 44000, Pakistan
| | - Asif Mir
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Shajee Siddiqui
- Department of Medicine, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan, Pakistan
| | | | - Asher Fawwad
- Department of Biochemistry, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Luc Marchand
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| | - Muhammad Adnan
- PHRC Research Centre, FJMU, Pakistan Health Research Council, Lahore 54000, Pakistan
| | - Muhammad Naeem
- Department of Biotechnology, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Abdul Basit
- Department of Medicine, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi 74600, Sindh, Pakistan
| | - Constantin Polychronakos
- Departments of Pediatrics and Human Genetics, McGill University Health Centre Research Institute, Montreal H4A 3J1, Canada
| |
Collapse
|
3
|
Abnormal Head Size in Children and Adolescents with Congenital Nervous System Disorders or Neurological Syndromes with One or More Neurodysfunction Visible since Infancy. J Clin Med 2020; 9:jcm9113739. [PMID: 33233862 PMCID: PMC7699836 DOI: 10.3390/jcm9113739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
The current study was designed to investigate co-occurrence of absolute/relative microcephaly, absolute/relative macrocephaly and congenital nervous system disorders or neurological syndromes with symptoms visible since infancy, based on fundamental data acquired during the admission procedure at a neurological rehabilitation ward for children and adolescents. The study applied a retrospective analysis of data collected during the hospitalization of 327 children and adolescents, aged 4-18 years, affected since infancy by congenital disorders of the nervous system and/or neurological syndromes associated with a minimum of one neurodysfunction. To identify subjects with absolute/relative microcephaly, absolute/relative macrocephaly in the group of children and adolescents, the adopted criteria took into account z-score values for head circumference (z-score hc) and head circumference index (z-score HCI). Dysmorphological (x+/-3s) and traditional (x+/-2s) criteria were adopted to diagnose developmental disorders of head size. Regardless of the adopted criteria, absolute macrocephaly often coexists with state after surgery of lumbar myelomeningocele and hydrocephalus, isolated hydrocephalus, hereditary motor and sensory polyneuropathy, and Becker's muscular dystrophy (p < 0.001, p = 0.002). Absolute macrocephaly is often associated with neural tube defects and neuromuscular disorders (p = 0.001, p = 0.001). Relative microcephaly often occurs with non-progressive encephalopathy (p = 0.017, p = 0.029). Absolute microcephaly, diagnosed on the basis of traditional criteria, is often associated with epilepsy (p = 0.043). In children and adolescents with congenital nervous system disorders or neurological syndromes with one or more neurodysfunction visible since infancy, there is variation in abnormal head size (statistically significant relationships and clinical implications were established). The definitions used allowed for the differentiation of abnormal head size.
Collapse
|
4
|
Arora V, Leon E, Diaz J, Hove HB, Carvalho DR, Kurosawa K, Nishimura N, Nishimura G, Saxena R, Ferreira C, Puri RD, Verma IC. Unique skeletal manifestations in patients with Primrose syndrome. Eur J Med Genet 2020; 63:103967. [PMID: 32473227 DOI: 10.1016/j.ejmg.2020.103967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Primrose syndrome (OMIM 259050) is a rare disorder characterised by macrocephaly with developmental delay, a recognisable facial phenotype, altered glucose metabolism, and other features such as sensorineural hearing loss, short stature, and calcification of the ear cartilage. It is caused by heterozygous variants in ZBTB20, a member of the POK family of transcription repressors. Recently, this gene was shown to have a role in skeletal development through its action on chondrocyte differentiation by repression of SOX9. We describe five unrelated patients with Primrose syndrome and distinct skeletal features including multiple Wormian bones, platybasia, bitemporal bossing, bathrocephaly, slender bones, epiphyseal and spondylar dysplasia. The radiological abnormalities of the skull and the epiphyseal dysplasia were the most consistent findings. This novel constellation of skeletal features expands the phenotypic spectrum of the disorder.
Collapse
Affiliation(s)
- Veronica Arora
- Institute of Medical Genetics and Genomics, New Delhi, India.
| | - Eyby Leon
- Rare Disease Institute, Children's National Health System, Washington DC, USA
| | - Jullianne Diaz
- Rare Disease Institute, Children's National Health System, Washington DC, USA
| | - Hanne Buciek Hove
- Center for Rare Diseases, Dept. of Pediatrics, Copenhagen University Hospital, at Rigshospitalet, Denmark
| | - Daniel Rocha Carvalho
- Medical Genetics Unit, SARAH Network of Rehabilitation Hospitals, Brasilia-DF, Brazil
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naoto Nishimura
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Gen Nishimura
- Department of Radiology, Tokyo Metropolitan Kiyose Children's Hospital, Kiyose, Japan
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, New Delhi, India
| | - Carlos Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, New Delhi, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, New Delhi, India.
| |
Collapse
|
5
|
Melis D, Carvalho D, Barbaro-Dieber T, Espay AJ, Gambello MJ, Gener B, Gerkes E, Hitzert MM, Hove HB, Jansen S, Jira PE, Lachlan K, Menke LA, Narayanan V, Ortiz D, Overwater E, Posmyk R, Ramsey K, Rossi A, Sandoval RL, Stumpel C, Stuurman KE, Cordeddu V, Turnpenny P, Strisciuglio P, Tartaglia M, Unger S, Waters T, Turnbull C, Hennekam RC. Primrose syndrome: Characterization of the phenotype in 42 patients. Clin Genet 2020; 97:890-901. [PMID: 32266967 PMCID: PMC7384157 DOI: 10.1111/cge.13749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down‐slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha‐fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype‐phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.
Collapse
Affiliation(s)
- Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Salerno, Italy.,Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Daniel Carvalho
- Medical Genetic Unit, SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil
| | | | - Alberto J Espay
- Department of Neurology, University of Cincinnati, Gardner Family Center for Parkinson's Disease and Movement Disorders, Cincinnati, Ohio, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Blanca Gener
- Department of Genetics, BioCruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Bizkaia, Spain
| | - Erica Gerkes
- Department of Genetics, University of Groningen, UMC Groningen, Groningen, The Netherlands
| | - Marrit M Hitzert
- Department of Genetics, University of Groningen, UMC Groningen, Groningen, The Netherlands
| | - Hanne B Hove
- Department of Pediatrics, Division of Rare Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sandra Jansen
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
| | - Petr E Jira
- Department of Pediatrics, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospitals of Southampton NHS Trust, Southampton, UK
| | - Leonie A Menke
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vinodh Narayanan
- Translational Genomic Research Institute, Center for Rare Childhood Disorders, Phoenix, Arizona, USA
| | - Damara Ortiz
- Medical Genetics Department, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pensylvania, USA
| | - Eline Overwater
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Renata Posmyk
- Department of Clinical Genetics, Podlaskie Medical Center, Bialystok, Poland
| | - Keri Ramsey
- Translational Genomic Research Institute, Center for Rare Childhood Disorders, Phoenix, Arizona, USA
| | - Alessandro Rossi
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | | | - Constance Stumpel
- Department of Clinical Genetics and GROW School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics Erasmus Medical Center, Rotterdam, The Netherlands
| | - Viviana Cordeddu
- Department of Hematology, Oncology and Molecular Medicine, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Peter Turnpenny
- Clinical Genetics Department, Royal Devon & Exeter Healthcare NHS, Exeter, UK
| | - Pietro Strisciuglio
- Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Sheela Unger
- Division of Genetic Medicine, University of Lausanne, Lausanne, Switzerland
| | - Todd Waters
- North Florida Regional Medical Center, Gainesville, Florida, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Raoul C Hennekam
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ripamonti S, Shomroni O, Rhee JS, Chowdhury K, Jahn O, Hellmann KP, Bonn S, Brose N, Tirard M. SUMOylation controls the neurodevelopmental function of the transcription factor Zbtb20. J Neurochem 2020; 154:647-661. [PMID: 32233089 DOI: 10.1111/jnc.15008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6 -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild-type and Zbtb20 knock-out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20-dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.
Collapse
Affiliation(s)
- Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Orr Shomroni
- NGS Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kamal Chowdhury
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus Peter Hellmann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
7
|
Primrose syndrome: a phenotypic comparison of patients with a ZBTB20 missense variant versus a 3q13.31 microdeletion including ZBTB20. Eur J Hum Genet 2020; 28:1044-1055. [PMID: 32071410 DOI: 10.1038/s41431-020-0582-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022] Open
Abstract
Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20 variants were identified as responsible for this syndrome. Indeed, ZBTB20 plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20 missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype-genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p = 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (p nonsignificant). Corpus callosum dysgenesis (p = 0.00004), hypothyroidism (p = 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.
Collapse
|
8
|
Yamamoto-Shimojima K, Imaizumi T, Akagawa H, Kanno H, Yamamoto T. Primrose syndrome associated with unclassified immunodeficiency and a novel ZBTB20 mutation. Am J Med Genet A 2019; 182:521-526. [PMID: 31821719 DOI: 10.1002/ajmg.a.61432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/29/2022]
Abstract
Primrose syndrome is a congenital malformation syndrome characterized by intellectual disability, developmental delay, progressive muscle wasting, and ear lobe calcification. Mutations in the ZBTB20 gene have been established as being accountable for this syndrome. In this study, a novel de novo ZBTB20 mutation, NM_001164342.2:c.1945C>T (p.Leu649Phe), has been identified through whole exome sequencing (WES) in a female patient presenting a typical Primrose phenotype. Because the present patient exhibited recurrent otitis media, detailed immunological examinations were performed in this study and subnormal immunoglobulin levels were firstly identified in a Primrose patient. Anatomical anomaly of the inner ear has never been reported in this patient and WES data did not include any relevant variants causally linked with the immunologic defect. Thus, there is a possibility of a relation between an unclassified immunodeficiency with selective IgG2 deficiency and Primrose syndrome and this may be the reason of recurrent otitis media frequently observed in Primrose patients. Because subnormal levels of IgG2 in this patient might be caused by an unrelated and still uncharacterized genetic cause, further studies are required to prove the causal link between aberrant ZBTB20 function and immunodeficiency.
Collapse
Affiliation(s)
- Keiko Yamamoto-Shimojima
- Japan Society for the Promotion of Science (RPD), Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Hitoshi Kanno
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
9
|
Ferreira LD, Borges-Medeiros RL, Thies J, Schnur RE, Lam C, de Oliveira JRM. Expansion of the Primrose syndrome phenotype through the comparative analysis of two new case reports with ZBTB20 variants. Am J Med Genet A 2019; 179:2228-2232. [PMID: 31321892 DOI: 10.1002/ajmg.a.61297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Primrose syndrome (PRIMS), a rare genetic disorder with several clinical findings including intellectual disability, macrocephaly, typical facial features, and muscle wasting, is caused by heterozygous variants in the ZBTB20 gene. We report the cases of two males diagnosed with PRIMS at different ages, emphasizing the likely progressive nature of the disorder, as well as the differences and similarities of presentation during infancy and adulthood. Patient 1 is a 2-year-old American male with a medical history marked by impaired hearing, developmental delays, and fainting spells. Patient 2 is a 28-year-old Brazilian male, who presents with a phenotype similar to that seen in Patient 1 with additional features of ectopic calcifications and prominent muscular and skeletal abnormalities. Additionally, Patient 2 has a history of fainting spells and diminished body height and weight, with the latter features having only been reported in one PRIMS patient so far. Both Patients 1 and 2 were found to carry heterozygous likely pathogenic missense variants, detected in the last coding exon of ZBTB20 (c.1822T>C, p.Cys608Arg, de novo, and c.1873A>G, p.Met625Val, respectively), consistent with PRIMS. Overall, these case reports highlight PRIMS's likely progressive nature and contribute to the understanding of the natural history of this condition.
Collapse
Affiliation(s)
- Laura D Ferreira
- Keizo Asami Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | | | - Christina Lam
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington.,Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - João R M de Oliveira
- Keizo Asami Laboratory, Universidade Federal de Pernambuco, Recife, Brazil.,Neuropsychiatry Department, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
10
|
Cleaver R, Berg J, Craft E, Foster A, Gibbons RJ, Hobson E, Lachlan K, Naik S, Sampson JR, Sharif S, Smithson S, Parker MJ, Tatton-Brown K. Refining the Primrose syndrome phenotype: A study of five patients with ZBTB20 de novo variants and a review of the literature. Am J Med Genet A 2019; 179:344-349. [PMID: 30637921 DOI: 10.1002/ajmg.a.61024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Primrose syndrome is a rare autosomal dominant condition caused by heterozygous missense variants within ZBTB20. Through an exome sequencing approach (as part of the Deciphering Developmental Disorders [DDD] study) we have identified five unrelated individuals with previously unreported, de novo ZBTB20 pathogenic missense variants. All five missense variants targeted the C2H2 zinc finger domains. This genotype-up approach has allowed further refinement of the Primrose syndrome phenotype. Major characteristics (>90% individuals) include an intellectual disability (most frequently in the moderate range), a recognizable facial appearance and brain MRI abnormalities, particularly abnormalities of the corpus callosum. Other frequent clinical associations (in 50-90% individuals) include sensorineural hearing loss (83%), hypotonia (78%), cryptorchidism in males (75%), macrocephaly (72%), behavioral issues (56%), and dysplastic/hypoplastic nails (57%). Based upon these clinical data we discuss our current management of patients with Primrose syndrome.
Collapse
Affiliation(s)
- Ruth Cleaver
- South West Thames Regional Genetics Service, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Jonathan Berg
- East of Scotland Regional Genetics Service, Dundee, United Kingdom
| | - Emily Craft
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Alison Foster
- West Midlands Regional Genetics Service, Birmingham, United Kingdom
| | | | - Emma Hobson
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, Southampton, United Kingdom.,Department of Human Genetics and Genomic Medicine, Southampton University, Southampton, United Kingdom
| | - Swati Naik
- West Midlands Regional Genetics Service, Birmingham, United Kingdom
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Saba Sharif
- West Midlands Regional Genetics Service, Birmingham, United Kingdom
| | - Sarah Smithson
- Clinical Genetics Service, University Hospitals Bristol, Bristol, United Kingdom
| | -
- Deciphering Developmental Disorders Study, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Michael J Parker
- Sheffield Children's NHS Foundation Trust, Sheffield Clinical Genetics Service, Sheffield, South Yorkshire, United Kingdom
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom.,St. George's University of London, London, United Kingdom
| |
Collapse
|