1
|
Pitiot AS, Blay P, Díaz-Navarro A, Fernández-Arrojo S, Romero R, Álvarez-Eguiluz Á, Alvarado MG, Álvarez N, García-Teijido P, Fernández Y, Palacio I, Puente XS, Balbín M. Featuring BRCA1 and BRCA2 germline mutational landscape from Asturias (North Spain). Clin Genet 2024; 106:525-531. [PMID: 38922859 DOI: 10.1111/cge.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The singular BRCA1/2 mutational landscape of Asturias is updated 10 years after the first study. We analyzed BRCA1 and BRCA2 pathogenic variants in 1653 index cases. In total, 238 families were identified to carry a pathogenic variant, 163 families in BRCA1 and 75 families in BRCA2. This yielded a prevalence rate of 14.4%. Seven recurrent variants were found accounting for 55% of the cases. Among them, three are widely distributed (BRCA1 c.211A>G, c.470_471del and c.3331_3334del) and four had been reported as novel in Asturias: two in BRCA1 (c.1674del and c.2901_2902dup) and two in BRCA2 (c.2095C>T and c.4040_4035delinsC). A common haplotype was established for all recurrent variants indicating a shared ancestral origin. Three splicing analyses are shown: BRCA1:c.5152+3A>C and BRCA1:c.5333-3T>G that lead to skipping of exon 18, and 22 respectively, and BRCA1:c.5278-1G>T giving rise to two transcripts, one lacking exon 21 (p.Ille1760Glyfs*60) and one lacking the first 8 nucleotides of exon 21 (p.Phe1761Asnfs*14), supporting pathogenicity for these variants.
Collapse
Affiliation(s)
- Ana S Pitiot
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar Blay
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Ander Díaz-Navarro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Sara Fernández-Arrojo
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Rosa Romero
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ángel Álvarez-Eguiluz
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta G Alvarado
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Nieves Álvarez
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Paula García-Teijido
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Yolanda Fernández
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Isabel Palacio
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Xose S Puente
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Milagros Balbín
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
2
|
Boelman MB, Hansen TVO, Smith MN, Hammer-Hansen S, Christensen AH, Diness BR. Aortic dissection in a young male with persistent ductus arteriosus and a novel variant in MYLK. Am J Med Genet A 2024; 194:e63458. [PMID: 37921548 DOI: 10.1002/ajmg.a.63458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Pathogenic variants in several genes involved in the function or regulation of smooth muscle cells (SMC) are known to predispose to congenital heart disease and thoracic aortic aneurysm and dissection (TAAD). Variants in MYLK are primarily known to predispose to TAAD, but a growing body of evidence points toward MYLK also playing an essential role in the regulation of SMC contraction outside the aorta. In this case report, we present a patient with co-occurrence of persistent ductus arteriosus (PDA) and thoracic aortic dissection. Genetic analyses revealed a novel splice acceptor variant (c.3986-1G > A) in MYLK, which segregated with disease in the family. RNA-analyses on fibroblasts showed that the variant induced skipping of exon 24, which resulted in an in-frame deletion of 101 amino acids. These findings suggest that MYLK-associated disease could include a broader phenotypic spectrum than isolated TAAD, including PDA and obstructive pulmonary disease. Genetic analyses could be considered in families with TAAD and PDA or obstructive pulmonary disease.
Collapse
Affiliation(s)
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Birgitte Rode Diness
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Jelsig AM, Rønlund K, Gede LB, Frederiksen JH, Karstensen JG, Birkedal U, van Overeem Hansen T. Identification of a novel pathogenic deep intronic variant in PTEN resulting in pseudoexon inclusion in a patient with juvenile polyps. J Hum Genet 2023; 68:721-724. [PMID: 37336910 DOI: 10.1038/s10038-023-01174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Colorectal, hamartomatous juvenile polyps occur as part of different hereditary syndromes, including Juvenile polyposis syndrome and PTEN-hamartoma tumour syndrome. However, based on clinical manifestations alone, it is difficult to differentiate between the syndromes, and genetic analysis with an NGS-panel is often used to aid diagnostics. We report a 59-year-old male with colorectal juvenile polyps, who had been referred to genetic testing but had normal genetic analysis. He did not fulfil the clinical criteria of PTEN- hamartoma tumour syndrome, but the clinical criteria of Juvenile polyposis syndrome. With Whole Genome Sequencing we detected a novel intronic variant of unknown significance in PTEN (NC_000010.11:g.89687361 A > G(chr10, hg19), NM_000314.8:c.209 + 2047 A > G). RNA analysis classified the variant as likely pathogenic as it results in a pseudoexon inclusion introducing a frameshift and a premature stop codon. The patient was then diagnosed with PTEN-hamartoma Tumour syndrome. To our knowledge this is the first report of a variant resulting in pseudoexon inclusion in PTEN.
Collapse
Affiliation(s)
- Anne Marie Jelsig
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | - Karina Rønlund
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Lene Bjerring Gede
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jane Hübertz Frederiksen
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - John Gásdal Karstensen
- Danish Polyposis Registry, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulf Birkedal
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Byrjalsen A, Stoltze U, Mehrjouy M, Frederiksen JH, Bak M, Birkedal U, Hasle H, Gerdes A, Schmiegelow K, Wadt K, Hansen TVO. The effect of a single SMARCA4 exon deletion on RNA splicing: Implications for variant classification. Mol Genet Genomic Med 2023; 11:e2232. [PMID: 37430472 PMCID: PMC10568377 DOI: 10.1002/mgg3.2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Exon deletions are generally considered pathogenic, particularly when they are located out of frame. Here, we describe a pediatric, female patient presenting with hypercalcemia and a small cell carcinoma of the ovary, hypercalcemic type, and carrying a germline de novo SMARCA4 exon 14 deletion. METHODS The SMARCA4 deletion was identified by whole genome sequencing, and the effect on the RNA level was examined by gel- and capillary electrophoresis and nanopore sequencing. RESULTS The deletion was in silico predicted to be truncating, but RNA analysis revealed two major transcripts with deletion of exon 14 alone or exon 14 through 15, where the latter was located in-frame. Because the patient's phenotype matched that of other patients with pathogenic germline variants in SMARCA4, the deletion was classified as likely pathogenic. CONCLUSION We propose to include RNA analysis in classification of single-exon deletions, especially if located outside of known functional domains, as this can identify any disparate effects on the RNA and DNA level, which may have implications for variant classification using the American College of Medical Genetics and Genomics guidelines.
Collapse
Affiliation(s)
- Anna Byrjalsen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ulrik Stoltze
- Department of Pediatrics and Adolescent Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mana Mehrjouy
- Department of Pediatrics and Adolescent Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | | | - Mads Bak
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ulf Birkedal
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Henrik Hasle
- Department of PediatricsAarhus University HospitalAarhus NDenmark
| | - Anne‐Marie Gerdes
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Karin Wadt
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Morak M, Pineda M, Martins A, Gaildrat P, Tubeuf H, Drouet A, Gómez C, Dámaso E, Schaefer K, Steinke-Lange V, Koehler U, Laner A, Hauchard J, Chauris K, Holinski-Feder E, Capellá G. Splicing analyses for variants in MMR genes: best practice recommendations from the European Mismatch Repair Working Group. Eur J Hum Genet 2022; 30:1051-1059. [PMID: 35676339 PMCID: PMC9437034 DOI: 10.1038/s41431-022-01106-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Over 20% of the DNA mismatch repair (MMR) germline variants in suspected Lynch syndrome patients are classified as variants of uncertain significance (VUS). Well-established functional assays are pivotal for assessing the biological impact of these variants and provide relevant evidence for clinical classification. In our collaborative European Mismatch Repair Working Group (EMMR-WG) we compared three different experimental approaches for evaluating the effect of seven variants on mRNA splicing in MMR genes: (i) RT-PCR of full-length transcripts (FLT), (ii) RT-PCR of targeted transcript sections (TTS), both from patient biological samples and (iii) minigene splicing assays. An overall good concordance was observed between splicing patterns in TTS, FLT and minigene analyses for all variants. The FLT analysis depicted a higher number of different isoforms and mitigated PCR-bias towards shorter isoforms. TTS analyses may miss aberrant isoforms and minigene assays may under/overestimate the severity of certain splicing defects. The interpretation of the experimental findings must be cautious to adequately discriminate abnormal events from physiological complex alternative splicing patterns. A consensus strategy for investigating the impact of MMR variants on splicing was defined. First, RNA should be obtained from patient's cell cultures (such as fresh lymphocyte cultures) incubated with/without a nonsense-mediated decay inhibitor. Second, FLT RT-PCR analysis is recommended to oversee all generated isoforms. Third, TTS analysis and minigene assays are useful independent approaches for verifying and clarifying FLT results. The use of several methodologies is likely to increase the strength of the experimental evidence which contributes to improve variant interpretation.
Collapse
Affiliation(s)
- Monika Morak
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany.,MGZ - Medizinisch Genetisches Zentrum, Munich, Germany
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, ONCOBELL Program, L'Hospitalet, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | | | - Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Aurélie Drouet
- Inserm U1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France
| | - Carolina Gómez
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, ONCOBELL Program, L'Hospitalet, Barcelona, Spain
| | - Estela Dámaso
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, ONCOBELL Program, L'Hospitalet, Barcelona, Spain
| | - Kerstin Schaefer
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany
| | - Verena Steinke-Lange
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany.,MGZ - Medizinisch Genetisches Zentrum, Munich, Germany
| | - Udo Koehler
- MGZ - Medizinisch Genetisches Zentrum, Munich, Germany
| | - Andreas Laner
- MGZ - Medizinisch Genetisches Zentrum, Munich, Germany
| | - Julie Hauchard
- Inserm U1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France
| | - Karine Chauris
- Inserm U1245, UNIROUEN, Normandie Univ, F-76000, Rouen, France
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Munich, Germany. .,MGZ - Medizinisch Genetisches Zentrum, Munich, Germany.
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology-IDIBELL, ONCOBELL Program, L'Hospitalet, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
Billaud A, Chevalier LM, Augereau P, Frenel JS, Passot C, Campone M, Morel A. Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Med 2021; 13:174. [PMID: 34749799 PMCID: PMC8576946 DOI: 10.1186/s13073-021-00976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Targeted therapies in oncology are promising but variants of uncertain significance (VUS) limit their use for clinical management and necessitate functional testing in vitro. Using BRCA1 and BRCA2 variants, which have consequences on PARP inhibitor sensitivity, and POLE variants, potential biomarkers of immunotherapy response, we developed a rapid functional assay based on CRISPR-Cas9 genome editing to determine the functional consequences of these variants having potentially direct implications on patients' access to targeted therapies. METHODS We first evaluated the functional impact of 26 BRCA1 and 7 BRCA2 variants by editing and comparing NGS results between the variant of interest and a silent control variant. Ten of these variants had already been classified as benign or pathogenic and were used as controls. Finally, we extended this method to the characterization of POLE VUS. RESULTS For the 23 variants that were unclassified or for which conflicting interpretations had been reported, 15 were classified as functionally normal and 6 as functionally abnormal. Another two variants were found to have intermediate consequences, both with potential impacts on splicing. We then compared these scores to the patients' responses to PARP inhibitors when possible. Finally, to prove the application of our method to the classification of variants from other tumor suppressor genes, we exemplified with three POLE VUS. Among them, two were classified with an intermediate functional impact and one was functionally abnormal. Eventually, four POLE variants previously classified in databases were also evaluated. However, we found evidence of a discordance with the classification, variant p.Leu424Val being found here functionally normal. CONCLUSIONS Our new rapid functional assay can be used to characterize the functional implication of BRCA1 and BRCA2 variants, giving patients whose variants were evaluated as functionally abnormal access to PARP inhibitor treatment. Retrospective analysis of patients' responses to PARP inhibitors, where accessible, was consistent with our functional score evaluation and confirmed the accuracy of our protocol. This method could potentially be extended to the classification of VUS from all essential tumor suppressor genes and can be performed within a timeframe compatible with clinical applications, thereby having a direct theranostic impact.
Collapse
Affiliation(s)
- Amandine Billaud
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Louise-Marie Chevalier
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Paule Augereau
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Jean-Sebastien Frenel
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Christophe Passot
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
| | - Mario Campone
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | - Alain Morel
- Université d'Angers, Inserm, CRCINA, SFR ICAT, F-49000, Angers, France.
- Institut de Cancérologie de l'Ouest Nantes-Angers, F-49000, Angers, France.
| |
Collapse
|
7
|
Moles-Fernández A, Domènech-Vivó J, Tenés A, Balmaña J, Diez O, Gutiérrez-Enríquez S. Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes. Cancers (Basel) 2021; 13:cancers13133341. [PMID: 34283047 PMCID: PMC8268271 DOI: 10.3390/cancers13133341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary There is a significant percentage of hereditary breast and ovarian cancer (HBOC) cases that remain undiagnosed, because no pathogenic variant is detected through massively parallel sequencing of coding exons and exon-intron boundaries of high-moderate susceptibility risk genes. Deep intronic regions may contain variants affecting RNA splicing, leading ultimately to disease, and hence they may explain several cases where the genetic cause of HBOC is unknown. This study aims to characterize intronic regions to identify a landscape of “exonizable” zones and test the efficiency of two in silico tools to detect deep intronic variants affecting the mRNA splicing process. Abstract The contribution of deep intronic splice-altering variants to hereditary breast and ovarian cancer (HBOC) is unknown. Current computational in silico tools to predict spliceogenic variants leading to pseudoexons have limited efficiency. We assessed the performance of the SpliceAI tool combined with ESRseq scores to identify spliceogenic deep intronic variants by affecting cryptic sites or splicing regulatory elements (SREs) using literature and experimental datasets. Our results with 233 published deep intronic variants showed that SpliceAI, with a 0.05 threshold, predicts spliceogenic deep intronic variants affecting cryptic splice sites, but is less effective in detecting those affecting SREs. Next, we characterized the SRE profiles using ESRseq, showing that pseudoexons are significantly enriched in SRE-enhancers compared to adjacent intronic regions. Although the combination of SpliceAI with ESRseq scores (considering ∆ESRseq and SRE landscape) showed higher sensitivity, the global performance did not improve because of the higher number of false positives. The combination of both tools was tested in a tumor RNA dataset with 207 intronic variants disrupting splicing, showing a sensitivity of 86%. Following the pipeline, five spliceogenic deep intronic variants were experimentally identified from 33 variants in HBOC genes. Overall, our results provide a framework to detect deep intronic variants disrupting splicing.
Collapse
Affiliation(s)
- Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Joanna Domènech-Vivó
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Medical Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Correspondence: (O.D.); (S.G.-E.)
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Correspondence: (O.D.); (S.G.-E.)
| |
Collapse
|
8
|
BRCA1 and BRCA2 whole cDNA analysis in unsolved hereditary breast/ovarian cancer patients. Cancer Genet 2021; 258-259:10-17. [PMID: 34237702 DOI: 10.1016/j.cancergen.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
Germline pathogenic variants in BRCA1 and BRCA2 genes (BRCA1/2) explain an important fraction of hereditary breast/ovarian cancer (HBOC) cases. Genetic testing generally involves examining coding regions and exon/intron boundaries, thus the frequency of deleterious variants in non-coding regions is unknown. Here we analysed BRCA1/2 whole cDNA in a large cohort of 320 unsolved high-risk HBOC cases in order to identify potential splicing alterations explained by variants in BRCA1/2 deep intronic regions. Whole RNA splicing profiles were analysed by RT-PCR using Sanger sequencing or high-resolution electrophoresis in a QIAxcel instrument. Known predominant BRCA1/2 alternative splicing events were detected, together with two novel events BRCA1 ▼21 and BRCA2 Δ18q_27p. BRCA2 exon 3 skipping was detected in one patient (male) affected with breast cancer, caused by a known Portuguese founder mutation (c.156_157insAluYa5). An altered BRCA2 splicing pattern was detected in three patients, consisting in the up-regulation of ▼20A, Δ22 and ▼20A+Δ22 transcripts. In silico analysis and semi-quantitative data identified the polymorphism BRCA2 c.8755-66T>C as a potential modifier of Δ22 levels. Our findings suggest that mRNA alterations in BRCA1/2 caused by deep intronic variants are rare in Spanish population. However, RNA analysis complements DNA-based strategies allowing the identification of alterations that could go undetected by conventional testing.
Collapse
|
9
|
Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Lorca V, Gómez-Sanz A, Carvalho S, Allen J, Infante M, Pérez-Segura P, Lázaro C, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers (Basel) 2021; 13:2845. [PMID: 34200360 PMCID: PMC8201001 DOI: 10.3390/cancers13112845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Collapse
Affiliation(s)
- Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Mar Infante
- Cancer Genetics, Unidad de Excelencia Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, 08908 Hospitalet de Llobregat, Spain;
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| |
Collapse
|
10
|
Nix P, Mundt E, Coffee B, Goossen E, Warf BM, Brown K, Bowles K, Roa B. Interpretation of BRCA2 Splicing Variants: A Case Series of Challenging Variant Interpretations and the Importance of Functional RNA Analysis. Fam Cancer 2021; 21:7-19. [PMID: 33469799 PMCID: PMC8799590 DOI: 10.1007/s10689-020-00224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022]
Abstract
A substantial proportion of pathogenic variants associated with an increased risk of hereditary cancer are sequence variants affecting RNA splicing. The classification of these variants can be complex when both non-functional and functional transcripts are produced from the variant allele. We present four BRCA2 splice site variants with complex variant interpretations (BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, c.8331+2T>C). Evidence supporting a pathogenic classification is available for each variant, including in silico models, absence in population databases, and published functional data. However, comprehensive RNA analysis showed that some functional transcript may be produced by each variant. BRCA2 c.68-3T>G results in a partial splice defect. For BRCA2 c.68-2A>G and c.425G>T, aberrant splicing was shown to produce a potentially functional, in-frame transcript. BRCA2 c.8331+2T>C may utilize a functional GC donor in place of the wild-type GT donor. The severity of cancer history for carriers of these variants was also assessed using a history weighting algorithm and was not consistent with pathogenic controls (carriers of known pathogenic variants in BRCA2). Due to the conflicting evidence, our laboratory classifies these BRCA2 variants as variants of uncertain significance. This highlights the importance of evaluating new and existing evidence to ensure accurate variant classification and appropriate patient care.
Collapse
Affiliation(s)
- Paola Nix
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA.
| | - Erin Mundt
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Bradford Coffee
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | | | - Bryan M Warf
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA.,Third Wave Analytics, Inc., San Francisco, CA, USA
| | - Krystal Brown
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Karla Bowles
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Benjamin Roa
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Tubeuf H, Caputo SM, Sullivan T, Rondeaux J, Krieger S, Caux-Moncoutier V, Hauchard J, Castelain G, Fiévet A, Meulemans L, Révillion F, Léoné M, Boutry-Kryza N, Delnatte C, Guillaud-Bataille M, Cleveland L, Reid S, Southon E, Soukarieh O, Drouet A, Di Giacomo D, Vezain M, Bonnet-Dorion F, Bourdon V, Larbre H, Muller D, Pujol P, Vaz F, Audebert-Bellanger S, Colas C, Venat-Bouvet L, Solano AR, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Gaildrat P, Sharan SK, Martins A. Calibration of Pathogenicity Due to Variant-Induced Leaky Splicing Defects by Using BRCA2 Exon 3 as a Model System. Cancer Res 2020; 80:3593-3605. [PMID: 32641407 DOI: 10.1158/0008-5472.can-20-0895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Julie Rondeaux
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Krieger
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France - Normandie University, UNICAEN, Caen, France
| | | | - Julie Hauchard
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Gaia Castelain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alice Fiévet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France.,Service Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Laëtitia Meulemans
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | | | | | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Aurélie Drouet
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Daniela Di Giacomo
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Myriam Vezain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Larbre
- Laboratoire d'Oncogénétique Moléculaire, Institut Godinot, Reims, France
| | - Danièle Muller
- Unité d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Pascal Pujol
- Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France
| | - Fátima Vaz
- Breast Cancer Risk Evaluation Clinic, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | | | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | | | - Angela R Solano
- Genotipificacion y Cancer Hereditario, Departmento de Analisis Clinicos, Centro de Educacion Medica e Investigaciones Clinicas (CEMIC), Ciudad Autonoma de Buenos Aires, Argentina
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|