1
|
Doray B, Jennings BC, Yang X, Liu L, Venkatarangan V, Kornfeld S, Li M. LYSET facilitates integration of both the N- and C-terminal transmembrane helices/cytoplasmic domains of GlcNAc-1-phosphotransferase. Mol Biol Cell 2025; 36:br12. [PMID: 39937677 PMCID: PMC12005095 DOI: 10.1091/mbc.e24-08-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
LYSET is a recently identified Golgi transmembrane (TM) protein, and inactivating mutations in the LYSET gene phenocopy mucolipidosis II (MLII), the lysosomal storage disease caused by loss of function of GlcNAc-1-phosphotransferase αβ (GNPTαβ), which tags lysosomal hydrolases with the mannose 6-phosphate (M6P) tag for delivery to lysosomes. It is conceivable that LYSET facilitates integration of both hydrophilic TM helices (TMHs) of GNPTαβ and retain the latter in the Golgi, although this has only been directly demonstrated for the N-terminal TMH wherein a membrane-stabilized GNPTαβ variant restores lysosomal function in cells lacking LYSET. Here we show that the C-terminal TMH of GNPTαβ also contributes to LYSET-mediated Golgi retention. In addition, disease-causing patient mutations in the N-terminal TMH of GNPTαβ, which increase the hydrophilicity of the helix, are partly rescued by overexpression of LYSET. Finally, we show that a membrane-stabilized GNPTαβ variant, despite overcoming the requirement for LYSET, still requires COPI-mediated recycling via the N-terminal cytosolic domain (CD) for GNPTαβ retention and function in the Golgi.
Collapse
Affiliation(s)
- Baraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lin Liu
- M6P Therapeutics, St. Louis, MO 63108
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Li H, Doray B, Jennings BC, Lee WS, Liu L, Kornfeld S, Li H. Structure of a truncated human GlcNAc-1-phosphotransferase variant reveals the basis for its hyperactivity. J Biol Chem 2024; 300:107706. [PMID: 39178950 PMCID: PMC11418123 DOI: 10.1016/j.jbc.2024.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Mutations that cause loss of function of GlcNAc-1-phosphotransferase (PTase) lead to the lysosomal storage disorder mucolipidosis II. PTase is the key enzyme of the mannose 6-phosphate (M6P) targeting system that is responsible for tagging lysosomal hydrolases with the M6P moiety for their delivery to the lysosome. We had previously generated a truncated hyperactive form of PTase termed S1S3 which was shown to notably increase the phosphorylation level of secreted lysosomal enzymes and enhance their uptake by cells. Here, we report the 3.4 Å cryo-EM structure of soluble S1S3 lacking both transmembrane domains and cytosolic tails. The structure reveals a high degree of conservation of the catalytic core to full-length PTase. In this dimeric structure, the EF-hand of one protomer is observed interacting with the conserved region four of the other. In addition, we present a high-quality EM 3D map of the UDP-GlcNAc bound form of the full-length soluble protein showing the key molecular interactions between the nucleotide sugar donor and side chain amino acids of the protein. Finally, although the domain organization of S1S3 is very similar to that of the Drosophila melanogaster (fruit fly) PTase homolog, we establish that the latter does not act on lysosomal hydrolases.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Benjamin C Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang-Sik Lee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Liu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
3
|
Richards CM, Jabs S, Qiao W, Varanese LD, Schweizer M, Mosen PR, Riley NM, Klüssendorf M, Zengel JR, Flynn RA, Rustagi A, Widen JC, Peters CE, Ooi YS, Xie X, Shi PY, Bartenschlager R, Puschnik AS, Bogyo M, Bertozzi CR, Blish CA, Winter D, Nagamine CM, Braulke T, Carette JE. The human disease gene LYSET is essential for lysosomal enzyme transport and viral infection. Science 2022; 378:eabn5648. [PMID: 36074821 PMCID: PMC9547973 DOI: 10.1126/science.abn5648] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lysosomes are key degradative compartments of the cell. Transport to lysosomes relies on GlcNAc-1-phosphotransferase-mediated tagging of soluble enzymes with mannose 6-phosphate (M6P). GlcNAc-1-phosphotransferase deficiency leads to the severe lysosomal storage disorder mucolipidosis II (MLII). Several viruses require lysosomal cathepsins to cleave structural proteins and thus depend on functional GlcNAc-1-phosphotransferase. Here, we used genome-scale CRISPR screens to identify Lysosomal Enzyme Trafficking factor (LYSET) as essential for infection by cathepsin-dependent viruses including SARS-CoV-2. LYSET deficiency resulted in global loss of M6P tagging and mislocalization of GlcNAc-1-phosphotransferase from the Golgi complex to lysosomes. Lyset knockout mice exhibited MLII-like phenotypes and human pathogenic LYSET alleles failed to restore lysosomal sorting defects. Thus, LYSET is required for correct functioning of the M6P trafficking machinery, and mutations in LYSET can explain the phenotype of the associated disorder.
Collapse
Affiliation(s)
- Christopher M Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Varanese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michaela Schweizer
- Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter R Mosen
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | | | - Malte Klüssendorf
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James R Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.,Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Arjun Rustagi
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - John C Widen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine E Peters
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.,Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford, CA, USA
| | - Catherine A Blish
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|