1
|
Toledano I, Supek F, Lehner B. Genome-scale quantification and prediction of pathogenic stop codon readthrough by small molecules. Nat Genet 2024; 56:1914-1924. [PMID: 39174735 PMCID: PMC11387191 DOI: 10.1038/s41588-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Premature termination codons (PTCs) cause ~10-20% of inherited diseases and are a major mechanism of tumor suppressor gene inactivation in cancer. A general strategy to alleviate the effects of PTCs would be to promote translational readthrough. Nonsense suppression by small molecules has proven effective in diverse disease models, but translation into the clinic is hampered by ineffective readthrough of many PTCs. Here we directly tackle the challenge of defining drug efficacy by quantifying the readthrough of ~5,800 human pathogenic stop codons by eight drugs. We find that different drugs promote the readthrough of complementary subsets of PTCs defined by local sequence context. This allows us to build interpretable models that accurately predict drug-induced readthrough genome-wide, and we validate these models by quantifying endogenous stop codon readthrough. Accurate readthrough quantification and prediction will empower clinical trial design and the development of personalized nonsense suppression therapies.
Collapse
Affiliation(s)
- Ignasi Toledano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- University Pompeu Fabra (UPF), Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
2
|
Torices L, Nunes-Xavier CE, Pulido R. Potentiation by Protein Synthesis Inducers of Translational Readthrough of Pathogenic Premature Termination Codons in PTEN Isoforms. Cancers (Basel) 2024; 16:2836. [PMID: 39199607 PMCID: PMC11352852 DOI: 10.3390/cancers16162836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
The PTEN tumor suppressor is frequently targeted in tumors and patients with PTEN hamartoma tumor syndrome (PHTS) through nonsense mutations generating premature termination codons (PTC) that may cause the translation of truncated non-functional PTEN proteins. We have previously described a global analysis of the readthrough reconstitution of the protein translation and function of the human canonical PTEN isoform by aminoglycosides. Here, we report the efficient functional readthrough reconstitution of the PTEN translational isoform PTEN-L, which displays a minimal number of PTC in its specific N-terminal extension in association with disease. We illustrate the importance of the specific PTC and its nucleotide proximal sequence for optimal readthrough and show that the more frequent human PTEN PTC variants and their mouse PTEN PTC equivalents display similar patterns of readthrough efficiency. The heterogeneous readthrough response of the different PTEN PTC variants was independent of the length of the PTEN protein being reconstituted, and we found a correlation between the amount of PTEN protein being synthesized and the PTEN readthrough efficiency. Furthermore, combination of aminoglycosides and protein synthesis inducers increased the readthrough response of specific PTEN PTC. Our results provide insights with which to improve the functional reconstitution of human-disease-related PTC pathogenic variants from PTEN isoforms by increasing protein synthesis coupled to translational readthrough.
Collapse
Affiliation(s)
- Leire Torices
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (L.T.); (C.E.N.-X.)
| | - Caroline E. Nunes-Xavier
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (L.T.); (C.E.N.-X.)
- Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, ISCIII, 28029 Madrid, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (L.T.); (C.E.N.-X.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, ISCIII, 28029 Madrid, Spain
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Torices L, Nunes-Xavier CE, Mingo J, Luna S, Erramuzpe A, Cortés JM, Pulido R. Induction of Translational Readthrough on Protein Tyrosine Phosphatases Targeted by Premature Termination Codon Mutations in Human Disease. Methods Mol Biol 2024; 2743:1-19. [PMID: 38147205 DOI: 10.1007/978-1-0716-3569-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nonsense mutations generating premature termination codons (PTCs) in various genes are frequently associated with somatic cancer and hereditary human diseases since PTCs commonly generate truncated proteins with defective or altered function. Induced translational readthrough during protein biosynthesis facilitates the incorporation of an amino acid at the position of a PTC, allowing the synthesis of a complete protein. This may evade the pathological effect of the PTC mutation and provide new therapeutic opportunities. Several protein tyrosine phosphatases (PTPs) genes are targeted by PTC in human disease, the tumor suppressor PTEN being the more prominent paradigm. Here, using PTEN and laforin as examples, two PTPs from the dual-specificity phosphatase subfamily, we describe methodologies to analyze in silico the distribution and frequency of pathogenic PTC in PTP genes. We also summarize laboratory protocols and technical notes to study the induced translational readthrough reconstitution of the synthesis of PTP targeted by PTC in association with disease in cellular models.
Collapse
Affiliation(s)
- Leire Torices
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Janire Mingo
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Sandra Luna
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Asier Erramuzpe
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Cortés
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Palomar-Siles M, Yurevych V, Bykov VJN, Wiman KG. Pharmacological induction of translational readthrough of nonsense mutations in the retinoblastoma (RB1) gene. PLoS One 2023; 18:e0292468. [PMID: 37917619 PMCID: PMC10621805 DOI: 10.1371/journal.pone.0292468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
The retinoblastoma protein (Rb) is encoded by the RB1 tumor suppressor gene. Inactivation of RB1 by inherited or somatic mutation occurs in retinoblastoma and various other types of tumors. A significant fraction (25.9%) of somatic RB1 mutations are nonsense substitutions leading to a premature termination codon (PTC) in the RB1 coding sequence and expression of truncated inactive Rb protein. Here we show that aminoglycoside G418, a known translational readthrough inducer, can induce full-length Rb protein in SW1783 astrocytoma cells with endogenous R579X nonsense mutant RB1 as well as in MDA-MB-436 breast carcinoma cells transiently transfected with R251X, R320X, R579X or Q702X nonsense mutant RB1 cDNA. Readthrough was associated with increased RB1 mRNA levels in nonsense mutant RB1 cells. Induction of full-length Rb protein was potentiated by the cereblon E3 ligase modulator CC-90009. These results suggest that pharmacological induction of translational readthrough could be a feasible strategy for therapeutic targeting of tumors with nonsense mutant RB1.
Collapse
Affiliation(s)
- Mireia Palomar-Siles
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Yurevych
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir J. N. Bykov
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Klas G. Wiman
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Torices L, Nunes-Xavier CE, López JI, Pulido R. Novel anti-PTEN C2 domain monoclonal antibodies to analyse the expression and function of PTEN isoform variants. PLoS One 2023; 18:e0289369. [PMID: 37527256 PMCID: PMC10393154 DOI: 10.1371/journal.pone.0289369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
PTEN is a major tumor suppressor gene frequently mutated in human tumors, and germline PTEN gene mutations are the molecular diagnostic of PTEN Hamartoma Tumor Syndrome (PHTS), a heterogeneous disorder that manifests with multiple hamartomas, cancer predisposition, and neurodevelopmental alterations. A diversity of translational and splicing PTEN isoforms exist, as well as PTEN C-terminal truncated variants generated by disease-associated nonsense mutations. However, most of the available anti-PTEN monoclonal antibodies (mAb) recognize epitopes at the PTEN C-terminal tail, which may introduce a bias in the analysis of the expression of PTEN isoforms and variants. We here describe the generation and precise characterization of anti-PTEN mAb recognizing the PTEN C2-domain, and their use to monitor the expression and function of PTEN isoforms and PTEN missense and nonsense mutations associated to disease. These anti-PTEN C2 domain mAb are suitable to study the pathogenicity of PTEN C-terminal truncations that retain stability and function but have lost the PTEN C-terminal epitopes. The use of well-defined anti-PTEN mAb recognizing distinct PTEN regions, as the ones here described, will help to understand the deleterious effects of specific PTEN mutations in human disease.
Collapse
Affiliation(s)
- Leire Torices
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Spelier S, van Doorn EPM, van der Ent CK, Beekman JM, Koppens MAJ. Readthrough compounds for nonsense mutations: bridging the translational gap. Trends Mol Med 2023; 29:297-314. [PMID: 36828712 DOI: 10.1016/j.molmed.2023.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Approximately 10% of all pathological mutations are nonsense mutations that are responsible for several severe genetic diseases for which no treatment regimens are currently available. The most widespread strategy for treating nonsense mutations is by enhancing ribosomal readthrough of premature termination codons (PTCs) to restore the production of the full-length protein. In the past decade several compounds with readthrough potential have been identified. However, although preclinical results on these compounds are promising, clinical studies have not yielded positive outcomes. We review preclinical and clinical research related to readthrough compounds and characterize factors that contribute to the observed translational gap.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Eveline P M van Doorn
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Martijn A J Koppens
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584, CT, Utrecht, The Netherlands; Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584, EA, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Heldin A, Cancer M, Palomar-Siles M, Öhlin S, Zhang M, Sun-Zhang A, Mariani A, Liu J, Bykov VJN, Wiman KG. Novel compounds that synergize with aminoglycoside G418 or eRF3 degraders for translational readthrough of nonsense mutant TP53 and PTEN. RNA Biol 2023; 20:368-383. [PMID: 37339263 DOI: 10.1080/15476286.2023.2222250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023] Open
Abstract
The TP53 and PTEN tumour suppressor genes are inactivated by nonsense mutations in a significant fraction of human tumours. TP53 nonsense mutatant tumours account for approximately one million new cancer cases per year worldwide. We have screened chemical libraries with the aim of identifying compounds that induce translational readthrough and expression of full-length p53 protein in cells with nonsense mutation in this gene. Here we describe two novel compounds with readthrough activity, either alone or in combination with other known readthrough-promoting substances. Both compounds induced levels of full-length p53 in cells carrying R213X nonsense mutant TP53. Compound C47 showed synergy with the aminoglycoside antibiotic and known readthrough inducer G418, whereas compound C61 synergized with eukaryotic release factor 3 (eRF3) degraders CC-885 and CC-90009. C47 alone showed potent induction of full-length PTEN protein in cells with different PTEN nonsense mutations. These results may facilitate further development of novel targeted cancer therapy by pharmacological induction of translational readthrough.
Collapse
Affiliation(s)
- Angelos Heldin
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Matko Cancer
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Mireia Palomar-Siles
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Öhlin
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Meiqiongzi Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Anna Mariani
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Vladimir J N Bykov
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Moesslacher CS, Kohlmayr JM, Stelzl U. Exploring absent protein function in yeast: assaying post translational modification and human genetic variation. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:164-183. [PMID: 34395585 PMCID: PMC8329848 DOI: 10.15698/mic2021.08.756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| |
Collapse
|