1
|
Ding X, Gong X, Fan Y, Cao J, Zhao J, Zhang Y, Wang X, Meng K. DNA double-strand break genetic variants in patients with premature ovarian insufficiency. J Ovarian Res 2023; 16:135. [PMID: 37430352 DOI: 10.1186/s13048-023-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinically heterogeneous disease that may seriously affect the physical and mental health of women of reproductive age. POI primarily manifests as ovarian function decline and endocrine disorders in women prior to age 40 and is an established cause of female infertility. It is crucial to elucidate the causative factors of POI, not only to expand the understanding of ovarian physiology, but also to provide genetic counselling and fertility guidance to affected patients. Factors leading to POI are multifaceted with genetic factors accounting for 7% to 30%. In recent years, an increasing number of DNA damage-repair-related genes have been linked with the occurrence of POI. Among them, DNA double-strand breaks (DSBs), one of the most damaging to DNA, and its main repair methods including homologous recombination (HR) and non-homologous end joining (NHEJ) are of particular interest. Numerous genes are known to be involved in the regulation of programmed DSB formation and damage repair. The abnormal expression of several genes have been shown to trigger defects in the overall repair pathway and induce POI and other diseases. This review summarises the DSB-related genes that may contribute to the development of POI and their potential regulatory mechanisms, which will help to further establish role of DSB in the pathogenesis of POI and provide theoretical guidance for the study of the pathogenesis and clinical treatment of this disease.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yingying Fan
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jinghe Cao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Forrest IS, Rocheleau G, Bafna S, Argulian E, Narula J, Natarajan P, Do R. Genetic and phenotypic profiling of supranormal ejection fraction reveals decreased survival and underdiagnosed heart failure. Eur J Heart Fail 2022; 24:2118-2127. [PMID: 35278270 PMCID: PMC9464795 DOI: 10.1002/ejhf.2482] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/18/2023] Open
Abstract
AIMS Individuals with supranormal left ventricular ejection fraction (snLVEF; LVEF >70%) have increased mortality. However, the genetic and phenotypic profile of snLVEF remains unknown. This study aimed to determine the relationship of both snLVEF genetic risk and phenotype with survival and underdiagnosed heart failure (HF). METHODS AND RESULTS A snLVEF genetic risk score (GRS) was applied and cases of snLVEF were identified in 486 754 individuals across two population-based cohorts (BioMe Biobank and UK Biobank). The snLVEF GRS and phenotype were evaluated for association with survival, as well as HF diagnosis, markers, symptoms, and medications. Of 486 754 participants, the median age was 58 years, 20 069 (4.1%) died, and 10 088 (2.1%) had diagnosed HF. Both snLVEF GRS (hazard ratio [HR] 1.1 for top 10% vs. bottom 10% GRS; p = 0.002) and phenotype (HR 1.4; p = 0.003) were associated with increased all-cause mortality. Both snLVEF GRS and phenotype were associated with reduced HF diagnosis (odds ratio [OR] 0.97 and OR 0.63, respectively; both p ≤0.002). However, the snLVEF GRS and phenotype were both associated with elevated brain natriuretic peptide (BNP) levels (146 and 185 pg/ml increase, respectively; p <0.001), including 268 out of 455 (59%) individuals with snLVEF phenotype who had BNP >100 pg/ml. Among 476 666 participants without HF diagnoses, snLVEF GRS and phenotype were associated with increased HF symptoms (e.g. exertional dyspnoea OR 1.4 and OR 1.3; p <0.003) and HF medications (e.g. loop diuretic OR 1.2 and OR 1.03; p <0.02). Associations were consistent in hypertensive individuals without cardiac comorbidities. CONCLUSIONS Genetic predisposition to and presence of snLVEF are associated with decreased survival and underdiagnosed HF.
Collapse
Affiliation(s)
- Iain S Forrest
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shantanu Bafna
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Argulian
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|