1
|
Bentestuen MS, Weis CN, Jeppesen CB, Thiele LS, Thirstrup JP, Cordero-Solorzano J, Jensen HK, Starnawska A, Hauser AS, Gasse C. Pharmacogenomic markers associated with drug-induced QT prolongation: a systematic review. Pharmacogenomics 2025; 26:53-72. [PMID: 40116580 PMCID: PMC11988217 DOI: 10.1080/14622416.2025.2481025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025] Open
Abstract
AIM To systematically assess clinical studies involving patients undergoing drug therapy, comparing different genotypes to assess the relationship with changes in QT intervals, with no limitations on study design, setting, population, dosing regimens, or duration. METHODS This systematic review followed PRISMA guidelines and a pre-registered protocol. Clinical human studies on PGx markers of diQTP were identified, assessed using standardized tools, and categorized by design. Gene associations were classified as pharmacokinetic or pharmacodynamic. Identified genes underwent pathway enrichment analyses. Drugs were classified by third-level Anatomical Therapeutic Chemical (ATC) codes. Descriptive statistics were computed by study category and drug classes. RESULTS Of 4,493 reports, 84 studies were included, identifying 213 unique variants across 42 drug classes, of which 10% were replicated. KCNE1-Asp85Asn was the most consistent variant. Most findings (82%) were derived from candidate gene studies, suggesting bias toward known markers. The diQTP-associated genes were mainly linked to "cardiac conduction" and "muscle contraction" pathways (false discovery rate = 4.71 × 10-14). We also found an overlap between diQTP-associated genes and congenital long QT syndrome genes. CONCLUSION Key genes, drugs, and pathways were identified, but few consistent PGx markers emerged. Extensive, unbiased studies with diverse populations are crucial to advancing the field. REGISTRATION A protocol was pre-registered at PROSPERO under registration number CRD42022296097. DATA DEPOSITION Data sets generated by this review are available at figshare: DOI: 10.6084/m9.figshare.27959616.
Collapse
Affiliation(s)
- Marlene Schouby Bentestuen
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Christian Noe Weis
- Department of Forensic Psychiatry, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | | | - Liv Swea Thiele
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Janne Pia Thirstrup
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Juan Cordero-Solorzano
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Henrik Kjærulf Jensen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD‐Heart, Aarhus, Denmark
| | - Anna Starnawska
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Alexander Sebastian Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christiane Gasse
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| |
Collapse
|
2
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Chapman GE, Osugo M, de Marvao A, Howes OD. Aripiprazole-Associated QT Prolongation in a Healthy Study Volunteer: A Case Report and Literature Review. J Clin Psychopharmacol 2024; 44:591-594. [PMID: 39442546 DOI: 10.1097/jcp.0000000000001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- George E Chapman
- Division of Psychiatry, Faculty of Brain Sciences, University College London; Camden & Islington NHS Foundation Trust, London, United Kingdom; MRC Laboratory of Medical Sciences, Imperial College London; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London; South London & Maudsley NHS Foundation Trust, London, United Kingdom; Department of Women and Children's Health, King's College London; British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London; Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | |
Collapse
|
4
|
Pilunthanakul T, Ting MQJ, Lee J, Gupta B. The impact of adjunctive aripiprazole on QT interval: A 12-week open label study in patients on olanzapine, clozapine or risperidone. Hum Psychopharmacol 2023; 38:e2863. [PMID: 36810742 DOI: 10.1002/hup.2863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To evaluate the effect of adjunct aripiprazole on QT of patients clinically stabilized on atypical antipsychotics. METHODS The dataset was from an open-label 12-week prospective trial that evaluated adjunctive use of 5 mg/day of aripiprazole on metabolic profile in patients with schizophrenia, or schizoaffective disorder stabilized on olanzapine, clozapine, or risperidone. Bazett-corrected QT (QTc) was manually calculated from ECGs measured at baseline (before aripiprazole) and week 12, by two doctors blind to the diagnosis and atypical antipsychotic. The change in QTc (∆QTc: baseline QTc-week 12 QTc) and the number of participants in normal, borderline, prolonged, and pathological groups after 12 weeks were analyzed. RESULTS Fifty-five participants, mean age of 39.3 (SD 8.2) years, were analyzed. The ∆QTc after 12 weeks was 5.9 ms (p = 0.143) for the whole sample; 16.4 ms (p = 0.762), 3.7 ms (p = 0.480) and 0.5 ms (p = 0.449), for the clozapine, risperidone and olanzapine group, respectively. There was no significant statistical difference comparing the change in QTc overall, and between atypical antipsychotic groups, when evaluating from baseline to endpoint. However, stratifying the sample based on sex-dependent QTc cut-offs showed a 45% decrease in abnormal QTc readings (p = 0.049) after aripiprazole initiation; 20 subjects had abnormal QTc at baseline, while only 11 subjects had abnormal QTc at 12 weeks. 25.5% of participants showed a reduction in at least one QTc severity group, while 65.5% had no change and 9.0% worsened in QTc group, after 12 weeks of adjunct aripiprazole. CONCLUSION Low-dose adjunctive aripiprazole did not prolong QTc in patients stabilized on either olanzapine, risperidone, or clozapine. More controlled studies evaluating the QTc effect of adjunctive aripiprazole should be done to confirm and support these findings.
Collapse
Affiliation(s)
- Thanita Pilunthanakul
- Department of Emergency and Crisis Care, Institute of Mental Health, Singapore, Singapore
| | - Mable Quek Jing Ting
- Department of Emergency and Crisis Care, Institute of Mental Health, Singapore, Singapore
| | - Jimmy Lee
- Department of Psychosis and Research Division, Institute of Mental Health, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bhanu Gupta
- Department of Emergency and Crisis Care, Institute of Mental Health, Singapore, Singapore
| |
Collapse
|
5
|
Vasiliu O. The pharmacogenetics of the new-generation antipsychotics - A scoping review focused on patients with severe psychiatric disorders. Front Psychiatry 2023; 14:1124796. [PMID: 36873203 PMCID: PMC9978195 DOI: 10.3389/fpsyt.2023.1124796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Exploring the possible correlations between gene variations and the clinical effects of the new-generation antipsychotics is considered essential in the framework of personalized medicine. It is expected that pharmacogenetic data will be useful for increasing the treatment efficacy, tolerability, therapeutic adherence, functional recovery, and quality of life in patients with severe psychiatric disorders (SPD). This scoping review investigated the available evidence about the pharmacokinetics, pharmacodynamics, and pharmacogenetics of five new-generation antipsychotics, i.e., cariprazine, brexpiprazole, aripiprazole, lumateperone, and pimavanserin. Based on the analysis of 25 primary and secondary sources and the review of these agents' summaries of product characteristics, aripiprazole benefits from the most relevant data about the impact of gene variability on its pharmacokinetics and pharmacodynamics, with significant consequences on this antipsychotic's efficacy and tolerability. The determination of the CYP2D6 metabolizer status is important when administering aripiprazole, either as monotherapy or associated with other pharmacological agents. Allelic variability in genes encoding dopamine D2, D3, and serotonin, 5HT2A, 5HT2C receptors, COMT, BDNF, and dopamine transporter DAT1 was also associated with different adverse events or variations in the clinical efficacy of aripiprazole. Brexpiprazole also benefits from specific recommendations regarding the CYP2D6 metabolizer status and the risks of associating this antipsychotic with strong/moderate CYP2D6 or CYP3A4 inhibitors. US Food and Drug Administration (FDA) and European Medicines Agency (EMA) recommendations about cariprazine refer to possible pharmacokinetic interactions with strong CYP3A4 inhibitors or inducers. Pharmacogenetic data about cariprazine is sparse, and relevant information regarding gene-drug interactions for lumateperone and pimavanserin is yet lacking. In conclusion, more studies are needed to detect the influence of gene variations on the pharmacokinetics and pharmacodynamics of new-generation antipsychotics. This type of research could increase the ability of clinicians to predict favorable responses to specific antipsychotics and to improve the tolerability of the treatment regimen in patients with SPD.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
6
|
Nahid NA, Johnson JA. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine. Expert Opin Drug Metab Toxicol 2022; 18:769-785. [PMID: 36597259 PMCID: PMC9891304 DOI: 10.1080/17425255.2022.2160317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION CYP2D6 contributes to the metabolism of approximately 20-25% of drugs. However, CYP2D6 is highly polymorphic and different alleles can lead to impacts ranging from null to increase in activity. Moreover, there are commonly used drugs that potently inhibit the CYP2D6, thus causing 'phenoconversion' which can convert the genotypic normal metabolizer into phenotypic poor metabolizer. Despite growing literature on the clinical implications of non-normal CYP2D6 genotype and phenoconversion on patient-related outcomes, implementation of CYP2D6 pharmacogenetics and phenoconversion to guide prescribing is rare. This review focuses on providing the clinical importance of CYP2D6 pharmacogenetics and phenoconversion in precision medicine and summarizes the challenges and approaches to implement these into clinical practice. AREAS COVERED A literature search was performed using PubMed and clinical studies documenting the effects of CYP2D6 genotypes and/or CYP2D6 inhibitors on pharmacokinetics, pharmacodynamics or treatment outcomes of CYP2D6-metabolized drugs, and studies on implementation challenges and approaches. EXPERT OPINION Considering the extent and impact of genetic polymorphisms of CYP2D6, phenoconversion by the comedications, and contribution of CYP2D6 in drug metabolism, CYP2D6 pharmacogenetics is essential to ensure drug safety and efficacy. Utilization of proper guidelines incorporating both CYP2D6 pharmacogenetics and phenoconversion in clinical care assists in optimizing drug therapy.
Collapse
Affiliation(s)
- Noor A. Nahid
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
- Division of Cardiovascular Medicine, University of Florida College of Medicine, FL, USA
| |
Collapse
|
7
|
Cong L, Wan Z, Li P, Liu D, He J, An Z, Liu L. Metabolic, genetic, and pharmacokinetic parameters for the prediction of olanzapine efficacy. Eur J Pharm Sci 2022; 177:106277. [PMID: 35981664 DOI: 10.1016/j.ejps.2022.106277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/31/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
Clinical use of the a olanzapine has significantly different individual-to-individual outcomes. Accordingly, this study aimed to develop a means of predicting response to olanzapine using a combined approach based on pharmacokinetics, pharmacometabonomics, and genetic polymorphism. The olanzapine pharmacokinetics of 19 healthy volunteers treated with orally disintegrating tablets were determined using high-performance liquid chromatography-tandem mass spectrometry. Metabolic profiling and phenotyping were performed on the blood samples that remained after pharmacokinetic analysis using ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry. Uridine diphosphate-glucuronosyltransferase (UGT), tyrosine hydroxylase (TH), γ-aminobutyric acid transaminase (GABA-T), and succinic semialdehyde dehydrogenase (SSADH) were identified as key genes. The single nucleotide polymorphism genotypes most related to drug metabolism were investigated by polymerase chain reaction and Sanger sequencing. Forty-one metabolites (p < 0.05) are increased or decreased after treatment with olanzapine. Tryptophan metabolism, norepinephrine metabolism, and γ-aminobutyric acid metabolism were identified as being related to the effects of olanzapine. Subjects carrying rs1641031 AC and CC exhibited a 59.2% increase in the mean peak concentration (Cmax) value and a 25.33% decrease in the mean oral clearance rate (CL/F) value, compared to that in subjects with the GABA-T rs1641031 AA genotype (p < 0.05). Moreover, polymorphism of the GABA-T gene has an impact on the metabolism of 5-hydroxytryptamine. Lysophosphatidylethanolamine (0:0/18:3), lysophosphatidylethanolamine (0:0/22:5), and octadecatrienoic acid distinguish subjects with high and low olanzapine drug oral clearance and are thus identified as biomarkers for predicting its efficacy.
Collapse
Affiliation(s)
- Ling Cong
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Zirui Wan
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Pengfei Li
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, PR China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, PR China.
| | - Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| |
Collapse
|
8
|
Xu Y, Amdanee N, Zhang X. Antipsychotic-Induced Constipation: A Review of the Pathogenesis, Clinical Diagnosis, and Treatment. CNS Drugs 2021; 35:1265-1274. [PMID: 34427901 DOI: 10.1007/s40263-021-00859-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Antipsychotic-induced gastrointestinal hypomotility and, in particular, its manifestation of constipation are common adverse effects in patients with schizophrenia in clinical practice. Serious complications of antipsychotic-induced constipation include ileus, ischaemic bowel disease, colon perforation, aspiration pneumonia, and bacterial septicaemia, which can be life threatening if left untreated, especially in patients prescribed clozapine. The aim of this paper is to review the latest research on the epidemiology, clinical examination methods, pathophysiology, and treatment options and preventive measures for antipsychotic-induced constipation. While clinicians are normally aware of the overall side effects caused by antipsychotics, constipation is often an under-recognized condition despite its relatively high incidence and its impact on daily living. The incidence of constipation differs among individual antipsychotics, but more than 50% of patients prescribed antipsychotics suffer from constipation. Limited fluid intake, poor dietary habits, and a sedentary lifestyle can also worsen constipation. The mechanisms of antipsychotic-induced constipation may be antagonism of cholinergic, histaminergic, and serotonergic receptors, with both parent drug and metabolite(s) contributing to the effects on gastrointestinal motility. Numerous methods, mainly divided into scale evaluations and objective examinations, are applied to evaluate antipsychotic-induced constipation; however, objective examinations have a greater ability to identify cases of gastrointestinal hypomotility since there is often an under-reporting of symptoms in subjective reporting and scale evaluation due to a higher pain threshold, an inability to express pain sensations, and a lack of symptom awareness in these patients. Antipsychotic drug-induced constipation should be closely monitored in patients receiving these medications, with timely intervention to avoid serious gastrointestinal consequences. There is currently no consensus on the efficacy of laxatives in these patients. Further in-depth studies should explore the underlying mechanisms and devise optimal therapeutic approaches to minimize constipation during antipsychotic treatment.
Collapse
Affiliation(s)
- Yue Xu
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Nousayhah Amdanee
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Yeh TP, Huang LC, Chen YF, Cheng JF. The Relationship between the Second-Generation Antipsychotics Efficacy and the Traditional Chinese Medicine Body Constitutions in Patients with Schizophrenia. Healthcare (Basel) 2021; 9:healthcare9111480. [PMID: 34828526 PMCID: PMC8622047 DOI: 10.3390/healthcare9111480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Schizophrenia requires lifelong treatment; Second-generation Antipsychotics (SGAs) have become the most prescribed medication for schizophrenia patients. The efficacy of various SGAs treatment may differ in schizophrenia patients with various traditional Chinese medicine (TCM) body constitution (BC) types. Method: This study applied a longitudinal quantitative research design, where a total of 66 participants were recruited. The Positive and Negative Symptom Scale (PANSS) and the Clinical Global Impression (CGI) score were used to evaluate patients’ psychopathology status in hospitalization, and body constitution questionnaires were conducted by face-to-face interviews in the 1st, 3rd, and 6th week of hospitalization. Results: More than 60% of schizophrenia patients who were treated with SGAs were classified to have unbalanced BC types including Yin-Xu, Yang-Xu and Stasis. Generalized estimating equation analysis revealed significant time effects in CGI and PANSS score improvements in both unbalanced and gentleness (balance) BC types, but no significant changes in the group and group-time interaction in the CGI and PANSS scores in different BC type groups. Conclusions: Schizophrenia patients under SGAs treatment had a higher proportion of unbalanced BC types which may lead to poorer physical or mental statuses, such as overweight problems. Health care providers could apply interventions according to patients’ BC types for disease prevention.
Collapse
Affiliation(s)
- Tzu-Pei Yeh
- School of Nursing, China Medical University, Taichung 406040, Taiwan; (T.-P.Y.); (L.-C.H.)
- Department of Nursing, China Medical University Hospital, Taichung 404332, Taiwan
| | - Li-Chi Huang
- School of Nursing, China Medical University, Taichung 406040, Taiwan; (T.-P.Y.); (L.-C.H.)
- Department of Nursing, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yu-Fen Chen
- Department of Nursing, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Jui-Fen Cheng
- School of Nursing, China Medical University, Taichung 406040, Taiwan; (T.-P.Y.); (L.-C.H.)
- Department of Nursing, China Medical University Hospital, Taichung 404332, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 7118.)
| |
Collapse
|
10
|
Zubiaur P, Soria-Chacartegui P, Villapalos-García G, Gordillo-Perdomo JJ, Abad-Santos F. The pharmacogenetics of treatment with olanzapine. Pharmacogenomics 2021; 22:939-958. [PMID: 34528455 DOI: 10.2217/pgs-2021-0051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic polymorphism in olanzapine-metabolizing enzymes, transporters and drug targets is associated with alterations in safety and efficacy. The aim of this systematic review is to describe all clinically relevant pharmacogenetic information on olanzapine and to propose clinically actionable variants. Two hundred and eighty-four studies were screened; 76 complied with the inclusion criteria and presented significant associations. DRD2 Taq1A (rs1800497) *A1, LEP -2548 (rs7799039) G and CYP1A2*1F alleles were related to olanzapine effectiveness and safety variability in several studies, with a high level of evidence. DRD2 -141 (rs1799732) Ins, A-241G (rs1799978) G, DRD3 Ser9Gly (rs6280) Gly, HTR2A rs7997012 A, ABCB1 C3435T (rs1045642) T and G2677T/A (rs2032582) T and UGT1A4*3 alleles were related to safety, effectiveness and/or pharmacokinetic variability with moderated level of evidence.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Paula Soria-Chacartegui
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Gonzalo Villapalos-García
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain
| | - Juan J Gordillo-Perdomo
- Department of Clinical Analysis, Hospital Universitario de La Princesa, Madrid, 28006, Spain
| | - Francisco Abad-Santos
- Department of Clinical Pharmacology, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, 28006, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28006, Spain
| |
Collapse
|
11
|
Zubiaur P, Mejía-Abril G, Navares-Gómez M, Villapalos-García G, Soria-Chacartegui P, Saiz-Rodríguez M, Ochoa D, Abad-Santos F. PriME-PGx: La Princesa University Hospital Multidisciplinary Initiative for the Implementation of Pharmacogenetics. J Clin Med 2021; 10:jcm10173772. [PMID: 34501219 PMCID: PMC8432257 DOI: 10.3390/jcm10173772] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
The implementation of clinical pharmacogenetics in daily practice is limited for various reasons. Today, however, it is a discipline in full expansion. Accordingly, in the recent times, several initiatives promoted its implementation, mainly in the United States but also in Europe. In this document, the genotyping results since the establishment of our Pharmacogenetics Unit in 2006 are described, as well as the historical implementation process that was carried out since then. Finally, this progress justified the constitution of La Princesa University Hospital Multidisciplinary Initiative for the Implementation of Pharmacogenetics (PriME-PGx), promoted by the Clinical Pharmacology Department of Hospital Universitario de La Princesa (Madrid, Spain). Here, we present the initiative along with the two first ongoing projects: the PROFILE project, which promotes modernization of pharmacogenetic reporting (i.e., from classic gene-drug pair reporting to complete pharmacogenetic reporting or the creation of pharmacogenetic profiles specific to the Hospital’s departments) and the GENOTRIAL project, which promotes the communication of relevant pharmacogenetic findings to any healthy volunteer participating in any bioequivalence clinical trial at the Clinical Trials Unit of Hospital Universitario de La Princesa (UECHUP).
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (G.M.-A.); (M.N.-G.); (G.V.-G.); (P.S.-C.); (D.O.)
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Correspondence: (P.Z.); (F.A.-S.); Tel.: +34-915-202-425 (P.Z. & F.A.-S.); Fax: +34-915-202-540 (P.Z. & F.A.-S.)
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (G.M.-A.); (M.N.-G.); (G.V.-G.); (P.S.-C.); (D.O.)
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (G.M.-A.); (M.N.-G.); (G.V.-G.); (P.S.-C.); (D.O.)
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (G.M.-A.); (M.N.-G.); (G.V.-G.); (P.S.-C.); (D.O.)
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (G.M.-A.); (M.N.-G.); (G.V.-G.); (P.S.-C.); (D.O.)
| | - Miriam Saiz-Rodríguez
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain;
| | - Dolores Ochoa
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (G.M.-A.); (M.N.-G.); (G.V.-G.); (P.S.-C.); (D.O.)
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, La Princesa University Hospital, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (G.M.-A.); (M.N.-G.); (G.V.-G.); (P.S.-C.); (D.O.)
- UICEC Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28200 Madrid, Spain
- Correspondence: (P.Z.); (F.A.-S.); Tel.: +34-915-202-425 (P.Z. & F.A.-S.); Fax: +34-915-202-540 (P.Z. & F.A.-S.)
| |
Collapse
|