1
|
Rasmussen SV, Wozniak A, Lathara M, Goldenberg JM, Samudio BM, Bickford LR, Nagamori K, Wright H, Woods AD, Chauhan S, Lee CJ, Rudzinski ER, Swift MK, Kondo T, Fisher DE, Imyanitov E, Machado I, Llombart-Bosch A, Andrulis IL, Gokgoz N, Wunder J, Mirotaki H, Nakamura T, Srinivasa G, Thway K, Jones RL, Huang PH, Berlow NE, Schöffski P, Keller C. Functional genomics of human clear cell sarcoma: genomic, transcriptomic and chemical biology landscape for clear cell sarcoma. Br J Cancer 2023; 128:1941-1954. [PMID: 36959380 PMCID: PMC10147623 DOI: 10.1038/s41416-023-02222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Systemic therapy for metastatic clear cell sarcoma (CCS) bearing EWSR1-CREB1/ATF1 fusions remains an unmet clinical need in children, adolescents, and young adults. METHODS To identify key signaling pathway vulnerabilities in CCS, a multi-pronged approach was taken: (i) genomic and transcriptomic landscape analysis, (ii) integrated chemical biology interrogations, (iii) development of CREB1/ATF1 inhibitors, and (iv) antibody-drug conjugate testing (ADC). The first approach encompassed DNA exome and RNA deep sequencing of the largest human CCS cohort yet reported consisting of 47 patient tumor samples and 8 cell lines. RESULTS Sequencing revealed recurrent mutations in cell cycle checkpoint, DNA double-strand break repair or DNA mismatch repair genes, with a correspondingly low to intermediate tumor mutational burden. DNA multi-copy gains with corresponding high RNA expression were observed in CCS tumor subsets. CCS cell lines responded to the HER3 ADC patritumab deruxtecan in a dose-dependent manner in vitro, with impaired long term cell viability. CONCLUSION These studies of the genomic, transcriptomic and chemical biology landscape represent a resource 'atlas' for the field of CCS investigation and drug development. CHK inhibitors are identified as having potential relevance, CREB1 inhibitors non-dependence of CCS on CREB1 activity was established, and the potential utility of HER3 ADC being used in CCS is found.
Collapse
Affiliation(s)
| | - Agnieszka Wozniak
- University Hospitals Leuven, Department of General Medical Oncology, and Laboratory of Experimental Oncology, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | | | | | | | | | - Kiyo Nagamori
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | | | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Shefali Chauhan
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Che-Jui Lee
- University Hospitals Leuven, Department of General Medical Oncology, and Laboratory of Experimental Oncology, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Erin R Rudzinski
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Michael K Swift
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - David E Fisher
- Department of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evgeny Imyanitov
- N.N. Petrov National Medicine Research Center of Oncology, St. Petersburg, Russia
| | - Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología and Patologika Laboratorio, Hospital QuironSalud, Valencia, Spain
| | | | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jay Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Takuro Nakamura
- The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Robin L Jones
- Sarcoma Unit, Royal Marsden Hospital, Division of Clinical Studies, Institute of Cancer Research, London, UK
| | - Paul H Huang
- Sarcoma Unit, Royal Marsden Hospital, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA.
| | - Patrick Schöffski
- University Hospitals Leuven, Department of General Medical Oncology, and Laboratory of Experimental Oncology, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA.
| |
Collapse
|
2
|
Sakumoto M, Oyama R, Takahashi M, Takai Y, Kito F, Shiozawa K, Qiao Z, Endo M, Yoshida A, Kawai A, Kondo T. Establishment and proteomic characterization of patient-derived clear cell sarcoma xenografts and cell lines. In Vitro Cell Dev Biol Anim 2017; 54:163-176. [PMID: 29197033 DOI: 10.1007/s11626-017-0207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 01/11/2023]
Abstract
Clear cell sarcoma (CCS) is an aggressive mesenchymal malignancy characterized by the unique chimeric EWS-ATF1 fusion gene. Patient-derived cancer models are essential tools for the understanding of tumorigenesis and the development of anti-cancer drugs; however, only a limited number of CCS cell lines exist. The objective of this study was to establish patient-derived CCS models. We established patient-derived CCS models from a 43-yr-old female patient. We prepared the patient-derived xenografts (PDXs) from tumor tissues obtained through biopsy or surgery and isolated stable cell lines from PDXs and the original tumor tissue. The presence of gene fusions was examined by RT-PCR, and Sanger sequencing. The established cell lines were characterized by short tandem repeat, viability, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell lines were examined by mass spectrometry and KEGG pathway analysis. The cell lines were maintained for more than 80 passages, and had tumorigenic characteristics such as colony and spheroid formation and invasion. Mass spectrometric proteome analysis demonstrated that the cell lines were enriched for similar but distinct molecular pathways, compared to those in the xenografts and original tumor tissue. Next, tyrosine kinase inhibitors were screened for their suppressive effects on viability. We found that ponatinib, vandetanib, and doxorubicin suppressed the growth of cell lines, and had equivalent IC50 values. Further in-depth investigation and understanding of drug-sensitivity mechanisms will be important for the clinical applications of our cell lines.
Collapse
Affiliation(s)
- Marimu Sakumoto
- Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rieko Oyama
- Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoko Takai
- Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Fusako Kito
- Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Zhiwei Qiao
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Makoto Endo
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
3
|
Sun Z, Zhan L, Liang L, Sui H, Zheng L, Sun X, Xie W. ZiBu PiYin recipe prevents diabetes-associated cognitive decline in rats: possible involvement of ameliorating mitochondrial dysfunction, insulin resistance pathway and histopathological changes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:200. [PMID: 27393392 PMCID: PMC4938951 DOI: 10.1186/s12906-016-1177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Disturbance in energy metabolism, as a key factor in diabetes-associated cognitive decline (DACD), has become a promising therapeutic target of Chinese medicine ZiBu PiYin Recipe (ZBPYR). However, it is still not clear how ZBPYR affects the mitochondrial function in DACD rats' brains, which is considered as the crucial cell organelle to supply energy for the brain. METHODS Type 2 diabetes mellitus (T2DM) rat models were established by using high fat diet and streptozotocin (STZ) (30 mg/kg, ip). The evaluation of insulin sensitivity was performed by oral glucose tolerance and insulin tolerance test. After 7 weeks, the T2DM rats were treated with vehicle or ZBPYR for 11 weeks and morris water maze (MWM) test were used to evaluate memory function. The ultra structural changes of prefrontal cortex (PFC) and hippocampus were examined by transmission electron microscopy (TEM). The mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) were measured with JC-1 and DCFDA assay. The levels of insulin proteins were quantified by Western Blot analysis and the markers of histopathological changes were detected by immunohistochemistry. RESULTS ZBPYR could alleviate learning and memory impairment of DACD rats. TEM showed that ZBPYR prevented mitochondrial ultra-structural alterations and number changes in the PFC and hippocampus of the DACD rats. In addition, ZBPYR significantly increased ΔΨm and lowered the levels of ROS. Further investigation indicated that ZBPYR suppressed the release of cytochrome c from mitochondria, strengthened insulin signaling and inhibited GSK3β over-expression. These positive effects were associated with reduced Aβ1-42 deposition and restored expression levels of microtubule-associated protein MAP2. CONCLUSION ZBPYR showed excellent protective effect against DACD via ameliorating mitochondrial dysfunction, insulin resistance and histopathological changes.
Collapse
|
4
|
Yu VY, Nguyen D, Pajonk F, Kupelian P, Kaprealian T, Selch M, Low DA, Sheng K. Incorporating cancer stem cells in radiation therapy treatment response modeling and the implication in glioblastoma multiforme treatment resistance. Int J Radiat Oncol Biol Phys 2015; 91:866-75. [PMID: 25752402 DOI: 10.1016/j.ijrobp.2014.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/22/2014] [Accepted: 12/01/2014] [Indexed: 01/06/2023]
Abstract
PURPOSE To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. METHODS AND MATERIALS The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non-small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. RESULTS Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. CONCLUSION The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from stereotactic ablative radiation therapy. The DLQ model also predicted the remarkable GBM radioresistance, a result that is highly consistent with clinical observations. The radioresistance putatively stemmed from accelerated DCC regrowth that rapidly restored compartmental equilibrium between CSCs and DCCs.
Collapse
Affiliation(s)
- Victoria Y Yu
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dan Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick Kupelian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Tania Kaprealian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Michael Selch
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Daniel A Low
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ke Sheng
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
5
|
Outani H, Tanaka T, Wakamatsu T, Imura Y, Hamada K, Araki N, Itoh K, Yoshikawa H, Naka N. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS. BMC Cancer 2014; 14:455. [PMID: 24946937 PMCID: PMC4076438 DOI: 10.1186/1471-2407-14-455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/10/2014] [Indexed: 02/07/2023] Open
Abstract
Background Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines. Methods Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo. Results Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling. Conclusions CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Norifumi Naka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Li L, McCormack AA, Nicholson JM, Fabarius A, Hehlmann R, Sachs RK, Duesberg PH. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. ACTA ACUST UNITED AC 2009; 188:1-25. [PMID: 19061776 DOI: 10.1016/j.cancergencyto.2008.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/05/2008] [Indexed: 01/10/2023]
Abstract
The chromosomes of cancer cells are unstable, because of aneuploidy. Despite chromosomal instability, however, cancer karyotypes are individual and quasi-stable, as is evident especially from clonal chromosome copy numbers and marker chromosomes. This paradox would be resolved if the karyotypes in cancers represent chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. To test this hypothesis, we analyzed the initial and long-term karyotypes of seven clones of newly transformed human epithelial, mammary, and muscle cells. Approximately 1 in 100,000 such cells generates transformed clones at 2-3 months after introduction of retrovirus-activated cellular genes or the tumor virus SV40. These frequencies are too low for direct transformation, so we postulated that virus-activated genes initiate transformation indirectly, via specific karyotypes. Using multicolor fluorescence in situ hybridization with chromosome-specific DNA probes, we found individual clonal karyotypes that were stable for at least 34 cell generations-within limits, as follows. Depending on the karyotype, average clonal chromosome numbers were stable within +/- 3%, and chromosome-specific copy numbers were stable in 70-100% cells. At any one time, however, relative to clonal means, per-cell chromosome numbers varied +/-18% and chromosome-specific copy numbers varied +/-1 in 0-30% of cells; unstable nonclonal markers were found within karyotype-specific quotas of <1% to 20% of the total chromosome number. For two clones, karyotypic ploidies also varied. With these rates of variation, the karyotypes of transformed clones would randomize in a few generations unless selection occurs. We conclude that individual aneuploid karyotypes initiate and maintain cancers, much like new species. These cancer-causing karyotypes are in flexible equilibrium between destabilizing aneuploidy and stabilizing selection for transforming function. Karyotypes as a whole, rather than specific mutations, explain the individuality, fluidity, and phenotypic complexity of cancers.
Collapse
Affiliation(s)
- Lin Li
- Department of Molecular and Cell Biology, Donner Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|