1
|
Mairal A, Mehrotra S, Kumar A, Maiwal R, Marsal J, Kumar A. Hyaluronic Acid-Conjugated Thermoresponsive Polymer-Based Bioformulation Enhanced Wound Healing and Gut Barrier Repair of a TNBS-Induced Colitis Injury Ex Vivo Model in a Dynamic Perfusion Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5382-5400. [PMID: 38266010 DOI: 10.1021/acsami.3c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Impairment of intestinal epithelium is a typical feature of inflammatory bowel disease (IBD) that causes leakage of bacteria and antigens from the intestinal lumen and thus results in persistent immune activation. Hence, healing and regeneration of the damaged gut mucosa is a promising therapeutic approach to achieve deep remission in IBD. Currently, available systemic therapies have moderate effects and are often associated with numerous side effects and malignancies. In this study, we aimed to develop a topical therapy by chemically conjugating a temperature-responsive polymer, i.e., poly(N-isopropylacrylamide), along with hyaluronic acid to obtain a sprayable therapeutic formulation that upon colon instillation adheres to the damaged gut mucosa due to its temperature-induced phase transition and mucoadhesive properties. An ex vivo adhesion experiment demonstrates that this therapeutic formulation forms a thin physical coating on the mucosal lining at a physiological temperature within 5 min. Physicochemical characterization of (P(NIPAM-co-NTBAM)-HA) established this formulation to be biocompatible, hemo-compatible, and non-immunogenic. Prednisolone was encapsulated within the polymer formulation to achieve maximum therapeutic efficacy in the case of IBD-like conditions as assessed in a custom-fabricated perfusion-based ex vivo model system. Histological analysis suggests that the prednisolone-encapsulated polymer formulation nearly restored the mucosal architecture after 2,4,6-trinitrobenzenesulfonic acid-induced damage. Furthermore, a significant (p ≤ 0.001) increase in mRNA levels of Muc-2 and ZO-1 in treated groups further confirmed the mucosal epithelial barrier restoration.
Collapse
Affiliation(s)
- Ayushi Mairal
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Rakhi Maiwal
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Jan Marsal
- Department of Clinical Sciences, Lund University and Skåne University Hospital, SE-22185 Lund, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
2
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
3
|
Michalczyk M, Humeniuk E, Adamczuk G, Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int J Mol Sci 2022; 24:ijms24010103. [PMID: 36613567 PMCID: PMC9820514 DOI: 10.3390/ijms24010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with its binding proteins, known as hyaladherins (CD44, RHAMM), revealing the molecular basis for its distinct biological function in the development of cancer. The presence of HA on the surface of tumor cells is a sign of an adverse prognosis. The involvement of HA in malignancy has been extensively investigated using cancer-free naked mole rats as a model. The HA metabolic components are examined for their potential impact on promoting or inhibiting tumor formation, proliferation, invasion, and metastatic spread. High molecular weight HA is associated with homeostasis and protective action due to its ability to preserve tissue integrity. In contrast, low molecular weight HA indicates a pathological condition in the tissue and plays a role in pro-oncogenic activity. A systematic approach might uncover processes related to cancer growth, establish novel prognostic indicators, and identify potential targets for treatment action.
Collapse
|
4
|
Ovarian Cancer-Cell Pericellular Hyaluronan Deposition Negatively Impacts Prognosis of Ovarian Cancer Patients. Biomedicines 2022; 10:biomedicines10112944. [PMID: 36428513 PMCID: PMC9687866 DOI: 10.3390/biomedicines10112944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hyaluronan (HA), a component of the extracellular matrix, is frequently increased under pathological conditions including cancer. Not only stroma cells but also cancer cells themselves synthesize HA, and the interaction of HA with its cognate receptors promotes malignant progression and metastasis. METHODS In the present study, HA deposition in tissue sections was analyzed by hyaluronan-binding protein (HABP) ligand histochemistry in 17 borderline tumors and 102 primary and 20 recurrent ovarian cancer samples. The intensity and, particularly, localization of the HA deposition were recorded: for the localization, the pericellular deposition around the ovarian cancer cells was distinguished from the deposition within the stromal compartment. These histochemical data were correlated with clinical and pathological parameters. Additionally, within a reduced subgroup of ovarian cancer samples (n = 70), the RNA levels of several HA-associated genes were correlated with the HA localization and intensity. RESULTS Both stroma-localized and pericellular tumor-cell-associated HA deposition were observed. Cancer-cell pericellular HA deposition, irrespective of its staining intensity, was significantly associated with malignancy, and in the primary ovarian cancer cohort, it represents an independent unfavorable prognostic marker for overall survival. Furthermore, a significant association between high CD44, HAS2 and HAS3 mRNA levels and a cancer-cell pericellular HA-deposition pattern was noted. In contrast, stromal hyaluronan deposition had no impact on ovarian cancer prognosis. CONCLUSIONS In conclusion, the site of HA deposition is of prognostic value, but the amount deposited is not. The significant association of only peritumoral cancer-cell HA deposition with high CD44 mRNA expression levels suggests a pivotal role of the CD44-HA signaling axis for malignant progression in ovarian cancer.
Collapse
|
5
|
Hyal1 Expression in Colorectal Carcinoma Cell Migration and Invasiveness: Significance and Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4418300. [PMID: 35836827 PMCID: PMC9276477 DOI: 10.1155/2022/4418300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
Objective To clarify the significance of hyaluronidsase 1 (Hyal1) expression in colorectal carcinoma (CRC) and its impact on tumor cell migration and invasiveness. Methods Human CRC cell lines SW480, HCT116, and SW620 were purchased, ELISA and western blot were used to detect the expression of Hyal1 in cells, CCK-8 assay to detect cell proliferation ability, cell scratch assay to check cell migration rate, and cell invasion was detected by the transwell assay. The correlation of Hyal1 with CRC cell migration and invasiveness capacities was analyzed. Result ELISA results showed that supernatant Hyal1 level was the lowest in SW480, highest in HCT116, with the level in SW620 in between (P < 0.05). No evident difference was identified by western blot in Hyal1 protein expression among the three cells (P > 0.05). The cell scratch assay and transwell assay showed that the migration and invasion ability of HCT116 cells was higher than that of SW620 (P < 0.05). In vitro, Hyal1 had a synergistic relationship with the invasiveness and migration capacities of CRC cells (P < 0.05). Conclusion Hyal1 is elevated in CRC and is consistent with the invasiveness and metastasis abilities of CRC cells. It is hoped that this research can provide reference for future prevention and treatment of CRC.
Collapse
|
6
|
Hyaluronan and the Fascial Frontier. Int J Mol Sci 2021; 22:ijms22136845. [PMID: 34202183 PMCID: PMC8269293 DOI: 10.3390/ijms22136845] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
The buzz about hyaluronan (HA) is real. Whether found in face cream to increase water volume loss and viscoelasticity or injected into the knee to restore the properties of synovial fluid, the impact of HA can be recognized in many disciplines from dermatology to orthopedics. HA is the most abundant polysaccharide of the extracellular matrix of connective tissues. HA can impact cell behavior in specific ways by binding cellular HA receptors, which can influence signals that facilitate cell survival, proliferation, adhesion, as well as migration. Characteristics of HA, such as its abundance in a variety of tissues and its responsiveness to chemical, mechanical and hormonal modifications, has made HA an attractive molecule for a wide range of applications. Despite being discovered over 80 years ago, its properties within the world of fascia have only recently received attention. Our fascial system penetrates and envelopes all organs, muscles, bones and nerve fibers, providing the body with a functional structure and an environment that enables all bodily systems to operate in an integrated manner. Recognized interactions between cells and their HA-rich extracellular microenvironment support the importance of studying the relationship between HA and the body’s fascial system. From fasciacytes to chronic pain, this review aims to highlight the connections between HA and fascial health.
Collapse
|
7
|
Koike H, Nishida Y, Shinomura T, Zhuo L, Hamada S, Ikuta K, Ito K, Kimata K, Ushida T, Ishiguro N. Forced expression of KIAA1199, a novel hyaluronidase, inhibits tumorigenicity of low-grade chondrosarcoma. J Orthop Res 2020; 38:1942-1951. [PMID: 32068299 DOI: 10.1002/jor.24629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 02/04/2023]
Abstract
Hyaluronan (HA) has been shown to play crucial roles in the tumorigenicity of malignant tumors. Chondrosarcoma, particularly when low-grade, is characterized by the formation of an extracellular matrix (ECM) containing abundant HA, and its drug/radiation resistance has become a clinically relevant problem. This study aimed to evaluate the effects of a novel hyaluronidase, KIAA1199, on ECM formation as well as antitumor effects on chondrosarcoma. To clarify the roles of KIAA1199 in chondrosarcoma, mouse KIAA1199 was stably transfected to Swarm rat chondrosarcoma (RCS) cells (histologically grade 1). We investigated the effects of KIAA1199 on RCS cells in vitro and an autografted model in vivo. HA binding protein (HABP) stainability and ECM formation in KIAA1199-RCS was markedly suppressed compared with that of control cells. No significant changes in messenger RNA expression of Has1, Has2, Has3, Hyal1, or Hyal2 were observed. KIAA1199 expression did not affect proliferation or apoptosis but inhibited migration and invasion of RCS cells. In contrast, the expression of KIAA1199 significantly inhibited the growth of grafted tumors and suppressed the stainability of alcian blue in tumor tissues. Although there was no direct inhibitory effect on proliferation in vitro, induction of KIAA1199 showed the antitumor effects in grafted tumor growth in vivo possibly due to changes in the tumor microenvironment such as inhibition of ECM formation. Forced expression of KIAA1199 exhibits antitumor effects on low-grade chondrosarcoma, which has chemo- and radio-therapy resistant features. Together, KIAA1199 could be a novel promising therapeutic tool for low-grade chondrosarcoma, mediated by the degradation of HA.
Collapse
Affiliation(s)
- Hiroshi Koike
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Tamayuki Shinomura
- Department of Hard Tissue Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lisheng Zhuo
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shunsuke Hamada
- Department of Orthopedic Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kan Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
HYAL1 Is Downregulated in Idiopathic Pulmonary Fibrosis and Inhibits HFL-1 Fibroblast Proliferation When Upregulated. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3659451. [PMID: 32258117 PMCID: PMC7086424 DOI: 10.1155/2020/3659451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF), the most common interstitial lung disease, arises from transforming growth factor beta 1- (TGFβ1-) induced aberrant fibroproliferation in response to epithelial injury. The TGFβ1-) induced aberrant fibroproliferation in response to epithelial injury. The TGF Methods We first performed microarray data mining of previously published gene expression datasets to identify key gene signatures in IPF lung tissues. HYAL1 expression levels in IPF and normal lung tissues were then characterized using immunohistochemistry followed by real-time quantitative reverse transcription-PCR (qRT-PCR) and western blot analysis on isolated fibroblasts from fresh lung tissues of IPF and healthy donors. A human fetal lung fibroblast HFL-1 cell line, which was used in place of primary lung fibroblasts, was used to assess the proliferative or apoptotic effects associated with lentiviral-induced HYAL1 overexpression using CCK-8 cell proliferation assay and Annexin V-APC staining. The identification of potentially associated molecular pathways was performed using microarray analysis followed by qRT-PCR and western blot analysis. Results Lung tissue microarray data mining and immunohistochemistry revealed significantly downregulation of HYAL1 in IPF lung tissue. However, HYAL1 in IPF lung tissue. However, HYAL1 in IPF lung tissue. However, HYAL1 in IPF lung tissue. However, β1-) induced aberrant fibroproliferation in response to epithelial injury. The TGFβ1-) induced aberrant fibroproliferation in response to epithelial injury. The TGF Conclusions We showed that HYAL1 overexpression could prevent HFL-1 fibroproliferation. Furthermore, our findings suggest that transcriptional regulators and BMP receptor signaling may be involved in HYAL1 modulation in IPF therapy.HYAL1 in IPF lung tissue. However,
Collapse
|
9
|
Ge M, Sun J, Chen M, Tian J, Yin H, Yin J. A hyaluronic acid fluorescent hydrogel based on fluorescence resonance energy transfer for sensitive detection of hyaluronidase. Anal Bioanal Chem 2020; 412:1915-1923. [DOI: 10.1007/s00216-020-02443-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022]
|
10
|
Abstract
The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.
Collapse
|
11
|
Shakouri A, Parvan R, Adljouy N, Abdolalizadeh J. Purification of hyaluronidase as an anticancer agent inhibiting CD44. Biomed Chromatogr 2019; 34:e4709. [PMID: 31630417 DOI: 10.1002/bmc.4709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023]
Abstract
Hyaluronidase (Hyal) can be employed to accomplish a diversity of complications related to hyaluronic acid (HA). Hyal contains some classes of catalysts that cleave HA. This enzyme is detected in several human tissues as well as in animal venoms, pathogenic organisms and cancers. Destructive cancer cells regularly increase the CD44 receptor existing in a cell membrane. This receptor acts as an exact receptor for HA, and HA is recognized to motivate the migration, spread, attack and metastasis of cancer cells. Nearly all of the methods used to purify Hyal are highly costly and not proper for industrial applications. This survey aims to review different methods of Hyal purification, which acts as an anticancer agent by degrading HA in tissues and thus inhibiting the CD44-HA interaction. Hyal can be successfully employed in the management of cancer, which is associated with HA-CD44. This review has described different methods for Hyal purification to prepare an origin to develop a novel purification technique for this highly appreciated protein. Using multiple columns is not applicable for the purification of Hyal and thus cannot be used at the industrial level. It is better to use affinity chromatography of anti-Hyal for Hyal with one-step purification.
Collapse
Affiliation(s)
- Amir Shakouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Adljouy
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Heldin P, Kolliopoulos C, Lin CY, Heldin CH. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal 2019; 65:109427. [PMID: 31654718 DOI: 10.1016/j.cellsig.2019.109427] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Department of Surgery, Uppsala University, Sweden; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
13
|
Jin Z, Zhang G, Liu Y, He Y, Yang C, Du Y, Gao F. The suppressive role of HYAL1 and HYAL2 in the metastasis of colorectal cancer. J Gastroenterol Hepatol 2019; 34:1766-1776. [PMID: 30972813 DOI: 10.1111/jgh.14660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hyaluronidases (HAases), enzymes that degrade hyaluronan, have been widely investigated in cancer biology. However, whether HAases serve as tumor promoters or suppressors has been controversial in different cancers, and the exact role of HAases in colorectal cancer (CRC) has not been elucidated. METHODS The expression levels of HYAL1, HYAL2, and HYAL3 in cancer and corresponding normal tissues from CRC patients were examined via immunohistochemistry. Then the correlation between HAases levels and pathological characteristics of CRC patients was analyzed. To verify the clinical data, HYAL1 and HYAL2 were downregulated or overexpressed in colon cancer cells LOVO and HCT116 to observe their influences on cell invasion and migration. For the mechanism study, we investigated the effects of HYAL1 and HYAL2 on the expression of matrix metalloproteases (MMPs)/tissue inhibitor of metalloproteases (TIMPs) and distribution of F-actin. RESULTS All the three HAases were abnormally elevated in cancer tissues. Interestingly, HYAL1 and HYAL2, but not HYAL3, were negatively correlated with lymphatic metastasis and TNM stage. When HYAL1 and HYAL2 were knocked down, the invasion and migration abilities of colon cancer cells were accelerated, whereas overexpression of HYAL1 and HYAL2 had the opposite effects. In addition, colon cancer cells with HYAL1 and HYAL2 downregulation showed increased levels of MMP2 and MMP9, decreased levels of TIMP1 and TIMP2, and more intense F-actin stress fibers. CONCLUSIONS Our study suggests that HYAL1 and HYAL2 suppress CRC metastasis through regulating MMPs/TIMPs balance and rearranging F-actin distribution, further inhibiting invasion and migration of cancer cells.
Collapse
Affiliation(s)
- Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Lin CY, Kolliopoulos C, Huang CH, Tenhunen J, Heldin CH, Chen YH, Heldin P. High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine 2019; 48:425-441. [PMID: 31526718 PMCID: PMC6838418 DOI: 10.1016/j.ebiom.2019.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A main pathological feature of severe dengue virus infection is endothelial hyper-permeability. The dengue virus nonstructural protein 1 (NS1) has been implicated in the vascular leakage that characterizes severe dengue virus infection, however, the molecular mechanisms involved are not known. METHODS A cohort of 250 dengue patients has been followed from the onset of symptoms to the recovery phase. Serum hyaluronan levels and several other clinical parameters were recorded. The effect of NS1 treatment of cultured fibroblasts and endothelial cells on the expressions of hyaluronan synthetic and catabolic enzymes and the hyaluronan receptor CD44, were determined, as have the effects on the formation of hyaluronan-rich matrices and endothelial permeability. FINDINGS Elevated serum hyaluronan levels (≥70 ng/ml) during early infection was found to be an independent predictor for occurrence of warning signs, and thus severe dengue fever. High circulating levels of the viral protein NS1, indicative of disease severity, correlated with high concentrations of serum hyaluronan. NS1 exposure decreased the expression of CD44 in differentiating endothelial cells impairing the integrity of vessel-like structures, and promoted the synthesis of hyaluronan in dermal fibroblasts and endothelial cells in synergy with dengue-induced pro-inflammatory mediators. Deposited hyaluronan-rich matrices around cells cultured in vitro recruited CD44-expressing macrophage-like cells, suggesting a mechanism for enhancement of inflammation. In cultured endothelial cells, perturbed hyaluronan-CD44 interactions enhanced endothelial permeability through modulation of VE-cadherin and cytoskeleton re-organization, and exacerbated the NS1-induced disruption of endothelial integrity. INTERPRETATION Pharmacological targeting of hyaluronan biosynthesis and/or its CD44-mediated signaling may limit the life-threatening vascular leakiness during moderate-to-severe dengue virus infection. FUND: This work was supported in part by grants from the Swedish Cancer Society (2018/337; 2016/445), the Swedish Research Council (2015-02757), the Ludwig Institute for Cancer Research, Uppsala University, the Ministry of Science and Technology, Taiwan (106-2314-B-037-088- and 106-2915-I-037-501-), Kaohsiung Medical University Hospital (KMUH103-3 T05) and Academy of Finland. The funders played no role in the design, interpretation or writing of the manuscript.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyrki Tenhunen
- Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden; Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Deparent of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
15
|
Liaw CY, Ji S, Guvendiren M. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Adv Healthc Mater 2018; 7. [PMID: 29345429 DOI: 10.1002/adhm.201701165] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/13/2017] [Indexed: 01/17/2023]
Abstract
There is a growing interest in engineering hydrogels for 3D tissue and disease models. The major motivation is to better mimic the physiological microenvironment of the disease and human condition. 3D tissue models derived from patients' own cells can potentially revolutionize the way treatment and diagnostic alternatives are developed. This requires development of tissue mimetic hydrogels with user defined and tunable properties. In this review article, a recent summary of 3D hydrogel platforms for in vitro tissue and disease modeling is given. Hydrogel design considerations and available hydrogel systems are summarized, followed by the types of currently available hydrogel models, such as bulk hydrogels, porous scaffolds, fibrous scaffolds, hydrogel microspheres, hydrogel sandwich systems, microwells, and 3D bioprinted constructs. Although hydrogels are utilized for a wide range of tissue models, this article focuses on liver and cancer models. This article also provides a detailed section on current challenges and future perspectives of hydrogel-based tissue models.
Collapse
Affiliation(s)
- Chya-Yan Liaw
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Shen Ji
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory; Otto H. York Chemical; Biological and Pharmaceutical Engineering; Newark College of Engineering; New Jersey Institute of Technology; University Heights; 138 York Center Newark NJ 07102 USA
| |
Collapse
|
16
|
Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H. A Trickster in Disguise: Hyaluronan's Ambivalent Roles in the Matrix. Front Oncol 2017; 7:242. [PMID: 29062810 PMCID: PMC5640889 DOI: 10.3389/fonc.2017.00242] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023] Open
Abstract
Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Ann-Kathrin Huber
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Eva Maria Stork
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Simon Wengert
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Franziska Woelfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Heike Boehm
- CSF Biomaterials, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Isolation and characterization of Conohyal-P1, a hyaluronidase from the injected venom of Conus purpurascens. J Proteomics 2017; 164:73-84. [PMID: 28479398 DOI: 10.1016/j.jprot.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 05/02/2017] [Indexed: 11/21/2022]
Abstract
Hyaluronidases are ubiquitous enzymes commonly found in venom and their main function is to degrade hyaluran, which is the major glycosaminoglycan of the extracellular matrix in animal tissues. Here we describe the purification and characterization of a 60kDa hyaluronidase found in the injected venom from Conus purpurascens, Conohyal-P1. Using a combined strategy based on transcriptomic and proteomic analysis, we determined the Conohyal-P1 sequence. Conohyal-P1 has conserved consensus catalytic and positioning domain residues characteristic of hyaluronidases and a C-terminus EGF-like domain. Additionally, the enzyme is expressed as a mixture of glycosylated isoforms at five asparagine sites. The activity of the native Conohyal-P1 was assess MS-based methods and confirmed by classical turbidimetric methods. The MS-based assay is particularly sensitive and provides the first detailed analysis of a venom hyaluronidase activity monitored with this method. The discovery of new hyaluronidases and the development of techniques to evaluate their performance can advance several therapeutic procedures, as these enzymes are widely used for enhanced drug delivery applications. BIOLOGICAL SIGNIFICANCE Cone snail venom is a remarkable source of therapeutically important molecules, as is the case of conotoxins, which have undergone extensive clinical trials for several applications. In addition to the conotoxins, a large array of proteins have been reported in the venom of several species of cone snails, including enzymes that were found in dissected and injected Conus venom. Here we describe the isolation and characterization of the hyaluronidase Conohyal-P1 from the injected venom of C. purpurascens. We employed a combined transcriptomic and proteomic analysis to obtain the full sequence of this hyaluronidase. The activity of Conohyal-P1 was assessed by a mass spectrometry-based method, which provide the first detailed venom hyaluronidase activity analysis monitored by mass spectrometry allowing the visualization of the substrate degradation by the enzyme.
Collapse
|
18
|
Park GB, Ko HS, Kim D. Sorafenib controls the epithelial‑mesenchymal transition of ovarian cancer cells via EGF and the CD44‑HA signaling pathway in a cell type‑dependent manner. Mol Med Rep 2017. [PMID: 28627617 PMCID: PMC5561797 DOI: 10.3892/mmr.2017.6773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cluster of differentiation (CD) 44 and epidermal growth factor (EGF) are closely involved in cellular migration and have been used as stem cell markers. Although the hyaluronan (HA)‑binding CD44 is responsible for enhanced cellular motility, the mechanism underlying its actions in various cell types and clinical conditions have yet to be elucidated. In the present study, the multikinase inhibitor sorafenib was used to investigate the diverse effects of EGF stimulation on epithelial‑mesenchymal transition (EMT) in ovarian cancer cells using immunoblotting and reverse transcription‑polymerase chain reaction. In addition, the association between EGF and CD44/HA signaling pathways in the control of mesenchymal phenotype was determined by gene silencing with small interfering RNA transfection. EGF stimulation of ovarian cancer cells increased cellular migration, mesenchymal transition, CD44 expression and the activation of matrix metalloproteinase (MMP)‑2 and MMP‑9. Sorafenib effectively suppressed the loss of epithelial characteristics in EGF‑treated SK‑OV‑3 ovarian cancer cells, via targeting the mitogen‑activated protein kinase (MAPK)/extracellular signal‑regulated kinase (ERK) pathway. Although treatment of Caov‑3 ovarian cancer cells with sorafenib blocked the expression of mesenchymal phenotypes following EGF stimulation, EGF‑activated Caov‑3 cells exhibited reduced MAPK/ERK signaling. Furthermore, EGF‑activated Caov‑3 cells increased the expression of hyaluronan synthase 2 and HA‑CD44 ligation in EGF‑exposed Caov‑3 cells, which resulted in the activation of the Ras/Raf/MEK signaling pathway, amplification of migratory activity and the expression of mesenchymal markers, including N‑cadherin and vimentin. Furthermore, silencing EGFR in SK‑OV‑3 cells and CD44 in Caov‑3 cells suppressed their migratory activity, through inhibition of the MAPK/ERK pathway. The present results suggested that EGF‑mediated signaling may regulate metastasis and invasion of ovarian cancer cells, in a cancer cell type‑dependent manner.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Hyun-Suk Ko
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
19
|
Lee T, Son HY, Choi Y, Shin Y, Oh S, Kim J, Huh YM, Haam S. Minimum hyaluronic acid (HA) modified magnetic nanocrystals with less facilitated cancer migration and drug resistance for targeting CD44 abundant cancer cells by MR imaging. J Mater Chem B 2017; 5:1400-1407. [DOI: 10.1039/c6tb02306a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report minimal amount of hyaluronic acid (HA) conjugated magnetic nanocrystals (mHMs) for targeted imaging of CD44 abundant breast cancer cells with less side effects via MRI.
Collapse
Affiliation(s)
- Taeksu Lee
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Hye Young Son
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Yuna Choi
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Youngmin Shin
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Seungjae Oh
- YUHS-KRIBB Medical Convergence Research Institute
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Yong-Min Huh
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| |
Collapse
|
20
|
Salwowska NM, Bebenek KA, Żądło DA, Wcisło-Dziadecka DL. Physiochemical properties and application of hyaluronic acid: a systematic review. J Cosmet Dermatol 2016; 15:520-526. [PMID: 27324942 DOI: 10.1111/jocd.12237] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hyaluronic acid is a widely available, biocompatible, polysaccharide with distinguishing physiochemical properties which inspire its application throughout several fields of medicine. OBJECTIVE We aim to investigate the application of hyaluronic acid and its effectiveness throughout several fields of medicine, including several therapies administered and prescribed by general health practitioners. METHODS We conducted a systematic review on randomized controlled trials about the physiochemical properties of hyaluronic acid and its application through primary care. Studies included in this review were peer reviewed and met our inclusion criteria. FINDINGS Factors were clustered into the following: uses throughout several fields of medicine, physiochemical properties, bioavailability, tolerance, effectiveness, and adverse effects. Therapies with hyaluronic acid provided long-lasting, pain relieving, moisturizing, lubricating, and dermal filling effect. Tissue hydration, elasticity, and durability improved. CONCLUSIONS Adjunct therapy with hyaluronic acid provides longer-lasting therapeutic effect when compared to the use of glucocorticosteroids and NSAIDs in osteoarthritic chronic diseases, is well-established in ophthalmology due to its lubricating properties for the corneal endothelium, and improves tissue hydration and cellular resistance to mechanical damage in aesthetic dermatology, and has marginal adverse effects. Several trials indicated its role in tumor markers, liver diseases, and in pharmaceuticals, but further research would be necessary to draw conclusive results in those fields.
Collapse
Affiliation(s)
- Natalia M Salwowska
- Department of Dermatology, Andrzej Mielęcki Memorial Independent Public Clinical Hospital in Katowice, Katowice, Poland
| | | | - Dominika A Żądło
- Department of General and Endocrine Surgery, School of Medicine in Bytom Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika L Wcisło-Dziadecka
- Department of Skin Structural Studies, Chair of Cosmetology, School of Pharmacy with Division of Medicine in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
21
|
Bordon KCF, Wiezel GA, Amorim FG, Arantes EC. Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology. J Venom Anim Toxins Incl Trop Dis 2015; 21:43. [PMID: 26500679 PMCID: PMC4619011 DOI: 10.1186/s40409-015-0042-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases from Mesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications.
Collapse
Affiliation(s)
- Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Gisele A. Wiezel
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G. Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C. Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
22
|
Shepard HM. Breaching the Castle Walls: Hyaluronan Depletion as a Therapeutic Approach to Cancer Therapy. Front Oncol 2015; 5:192. [PMID: 26380222 PMCID: PMC4551830 DOI: 10.3389/fonc.2015.00192] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) has many functions in the extracellular milieu of normal and diseased tissues. Disease-associated HA accumulation has been shown to predict a worsened prognosis in cancer patients, with tumors having a high-extracellular HA content (HA-high) being more aggressive than their HA-low counterparts. HA-high tumor aggressiveness is derived from the specialized biomechanical and molecular properties of the HA-based assembly of HA binding proteins and the growth-promoting factors that accumulate in it. Biophysical characteristics of an HA-high tumor microenvironment include high tumor interstitial pressure, compression of tumor vasculature, and resulting tumor hypoxia. Within the tumor cell membrane, HA receptors, primarily CD44 and RHAMM, anchor the HA-high extracellular network. HA-CD44 association on the tumor cell surface enhances receptor tyrosine kinase activity to drive tumor progression and treatment resistance. Together, malignant cells in this HA-high matrix may evolve dependency on it for growth. This yields the hypothesis that depleting HA in HA-high tumors may be associated with a therapeutic benefit. A pegylated form of recombinant human hyaluronidase PH20 (PEGPH20) has been deployed as a potential cancer therapeutic in HA-high tumors. PEGPH20 can collapse this matrix by degrading the HA-assembled tumor extracellular framework, leading to tumor growth inhibition, preferentially in HA-high tumors. Enzymatic depletion of HA by PEGPH20 results in re-expansion of the tumor vasculature, reduction in tumor hypoxia, and increased penetration of therapeutic molecules into the tumor. Finally, HA-depletion results in reduced signaling via CD44/RHAMM. Taken together, HA-depletion strategies accomplish their antitumor effects by multiple mechanisms that include targeting both biophysical and molecular signaling pathways. Ongoing clinical trials are examining the potential of PEGPH20 in combination with partner therapeutics in several cancers.
Collapse
|
23
|
Sá VKD, Rocha TP, Moreira A, Soares FA, Takagaki T, Carvalho L, Nicholson AG, Capelozzi VL. Hyaluronidases and hyaluronan synthases expression is inversely correlated with malignancy in lung/bronchial pre-neoplastic and neoplastic lesions, affecting prognosis. ACTA ACUST UNITED AC 2015; 48:1039-47. [PMID: 26352698 PMCID: PMC4671531 DOI: 10.1590/1414-431x20154693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
We collected a series of 136 lung/bronchial and 56 matched lung parenchyma tissue
samples from patients who underwent lung/bronchial biopsies and presented invasive
carcinoma after lung surgery. The lung/bronchial samples included basal cell
hyperplasia, squamous metaplasia, moderate dysplasia, adenomatous hyperplasia, severe
dysplasia, squamous cell carcinoma and adenocarcinoma. Matched lung parenchyma tissue
samples included 25 squamous cell carcinomas and 31 adenocarcinomas.
Immunohistochemistry was performed to analyze for the distribution of hyaluronidase
(Hyal)-1 and −3, and hyaluronan synthases (HAS)-1, −2, and −3. Hyal-1 showed
significantly higher expression in basal cell hyperplasia than in moderate dysplasia
(P=0.01), atypical adenomatous hyperplasia (P=0.0001), or severe dysplasia (P=0.03).
Lower expression of Hyal-3 was found in atypical adenomatous hyperplasia than in
basal cell hyperplasia (P=0.01) or moderate dysplasia (P=0.02). HAS-2 was
significantly higher in severe dysplasia (P=0.002) and in squamous metaplasia
(P=0.04) compared with basal cell hyperplasia. HAS-3 was significantly expressed in
basal cell hyperplasia compared with atypical adenomatous hyperplasia (P=0.05) and
severe dysplasia (P=0.02). Lower expression of HAS-3 was found in severe dysplasia
compared with squamous metaplasia (P=0.01) and moderate dysplasia (P=0.01).
Epithelial Hyal-1 and −3 and HAS-1, −2, and −3 expressions were significantly higher
in pre-neoplastic lesions than in neoplastic lesions. Comparative Cox multivariate
analysis controlled by N stage and histologic tumor type showed that patients with
high HAS-3 expression in pre-neoplastic cells obtained by lung/bronchial biopsy
presented a significantly higher risk of death (HR=1.19; P=0.04). We concluded that
localization of Hyal and HAS in lung/bronchial pre-neoplastic and neoplastic lesions
was inversely related to malignancy, which implied that visualizing these factors
could be a useful diagnostic procedure for suspected lung cancer. Finalizing this
conclusion will require a wider study in a randomized and prospective trial.
Collapse
Affiliation(s)
- V K de Sá
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T P Rocha
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Al Moreira
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - F A Soares
- Departamento de Anatomia Patológica, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - T Takagaki
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L Carvalho
- Universidade de Coimbra, Coimbra, Portugal
| | - A G Nicholson
- NHS Foundation Trust, National Heart and Lung Division, Imperial College, London, UK
| | - V L Capelozzi
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
24
|
Takabe P, Bart G, Ropponen A, Rilla K, Tammi M, Tammi R, Pasonen-Seppänen S. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion. Exp Cell Res 2015. [PMID: 26222208 DOI: 10.1016/j.yexcr.2015.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells.
Collapse
Affiliation(s)
- Piia Takabe
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland.
| | - Geneviève Bart
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | - Antti Ropponen
- University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio, Finland
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | - Markku Tammi
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | - Raija Tammi
- University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio, Finland
| | | |
Collapse
|
25
|
Schmaus A, Bauer J, Sleeman JP. Sugars in the microenvironment: the sticky problem of HA turnover in tumors. Cancer Metastasis Rev 2015; 33:1059-79. [PMID: 25324146 DOI: 10.1007/s10555-014-9532-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The properties and behavior of tumor cells are closely regulated by their microenvironment. Accordingly, stromal cells and extracellular matrix components can have a pronounced effect on cancer initiation, growth, and progression. The linear glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix. Altered synthesis and degradation of HA in the tumor context has been implicated in many aspects of tumor biology. In particular, the accumulation of small HA oligosaccharides (sHA) in the tumor interstitial space may play a decisive role, due to the ability of sHA to activate a number of biological processes that are not modulated by high molecular weight (HMW)-HA. In this article, we review the normal physiological role and metabolism of HA and then survey the evidence implicating HA in tumor growth and progression, focusing in particular on the potential contribution of sHA to these processes.
Collapse
Affiliation(s)
- Anja Schmaus
- Institut für Toxikologie und Genetik, Karlsruhe Institute for Technology (KIT), Campus Nord, Postfach 3640, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
26
|
Monslow J, Govindaraju P, Puré E. Hyaluronan - a functional and structural sweet spot in the tissue microenvironment. Front Immunol 2015; 6:231. [PMID: 26029216 PMCID: PMC4432798 DOI: 10.3389/fimmu.2015.00231] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
Transition from homeostatic to reactive matrix remodeling is a fundamental adaptive tissue response to injury, inflammatory disease, fibrosis, and cancer. Alterations in architecture, physical properties, and matrix composition result in changes in biomechanical and biochemical cellular signaling. The dynamics of pericellular and extracellular matrices, including matrix protein, proteoglycan, and glycosaminoglycan modification are continually emerging as essential regulatory mechanisms underlying cellular and tissue function. Nevertheless, the impact of matrix organization on inflammation and immunity in particular and the consequent effects on tissue healing and disease outcome are arguably under-studied aspects of adaptive stress responses. Herein, we review how the predominant glycosaminoglycan hyaluronan (HA) contributes to the structure and function of the tissue microenvironment. Specifically, we examine the evidence of HA degradation and the generation of biologically active smaller HA fragments in pathological settings in vivo. We discuss how HA fragments versus nascent HA via alternate receptor-mediated signaling influence inflammatory cell recruitment and differentiation, resident cell activation, as well as tumor growth, survival, and metastasis. Finally, we discuss how HA fragmentation impacts restoration of normal tissue function and pathological outcomes in disease.
Collapse
Affiliation(s)
- James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Priya Govindaraju
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Skandalis SS, Gialeli C, Theocharis AD, Karamanos NK. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Adv Cancer Res 2015; 123:277-317. [PMID: 25081534 DOI: 10.1016/b978-0-12-800092-2.00011-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment. Many of these methods can decrease tumor burden in animal models but have yet to show significant clinical utility. Recent advances in nanomedicine have offered new valuable tools for cancer detection, prevention, and treatment. The enhanced permeability and retention effect has served as key rationale for using nanoparticles to treat solid tumors. However, the targeted and uniform delivery of these particles to all regions of tumors in sufficient quantities requires optimization. An ideal nanocarrier should be equipped with selective ligands that are highly or exclusively expressed on target cells and thus endow the carriers with specific targeting capabilities. In this review, we describe how the hyaluronan-CD44 system may provide such an alternative in tumors expressing specific CD44 variants.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
28
|
Abstract
Hyaluronidases are a family of five human enzymes that have been differentially implicated in the progression of many solid tumor types, both clinically and in functional studies. Advances in the past 5 years have clarified many apparent contradictions: (1) by demonstrating that specific hyaluronidases have alternative substrates to hyaluronan (HA) or do not exhibit any enzymatic activity, (2) that high-molecular weight HA polymers elicit signaling effects that are opposite those of the hyaluronidase-digested HA oligomers, and (3) that it is actually the combined overexpression of HA synthesizing enzymes with hyaluronidases that confers tumorigenic potential. This review examines the literature supporting these conclusions and discusses novel mechanisms by which hyaluronidases impact invasive tumor cell processes. In addition, a detailed structural and functional comparison of the hyaluronidases is presented with insights into substrate selectivity and potential for therapeutic targeting. Finally, technological advances in targeting hyaluronidase for tumor imaging and cancer therapy are summarized.
Collapse
Affiliation(s)
- Caitlin O McAtee
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | - Joseph J Barycki
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | - Melanie A Simpson
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA.
| |
Collapse
|
29
|
Ramakrishna S, Suresh B, Baek KH. Biological functions of hyaluronan and cytokine-inducible deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer 2014; 1855:83-91. [PMID: 25481051 DOI: 10.1016/j.bbcan.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 11/26/2022]
Abstract
The modification of proteins through post-translation and degradation by the ubiquitin-proteasome system plays a pivotal role in a broad array of biological processes. Reversal of this process by deubiquitination is a central step in the maintenance and regulation of cellular homeostasis. It now appears that the regulation of ubiquitin pathways by deubiquitinating enzymes (DUBs) could be used as targets for anticancer therapy. Recent success in inducing apoptosis in cancerous cells by USP17, a cytokine-inducible DUB encoding two hyaluronan binding motifs (HABMs) showing direct interaction with hyaluronan (HA), could prove a promising step in the development of DUBs containing HABMs as agents in anticancer therapeutics. In this review, we summarize the importance of hyaluronan (HA) in cancer, the role played by DUBs in apoptosis, and a possible relationship between DUBs and HA in cancerous cells, suggesting new strategies for applying DUB enzymes as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea.
| |
Collapse
|
30
|
Schmaus A, Sleeman JP. Hyaluronidase-1 expression promotes lung metastasis in syngeneic mouse tumor models without affecting accumulation of small hyaluronan oligosaccharides in tumor interstitial fluid. Glycobiology 2014; 25:258-68. [PMID: 25354852 DOI: 10.1093/glycob/cwu106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Enhanced levels in tumors of hyaluronan, a glycosaminoglycan component of the extracellular matrix, and hyaluronidases such as hyaluronidase-1 (Hyal1) that degrade hyaluronan have both been linked to poor prognosis and metastasis, suggesting that the turnover of hyaluronan might contribute to tumor progression. Small hyaluronan oligosaccharides (sHA) can accumulate in tumor interstitial fluid (TIF), and have been implicated in a number of processes that drive tumor progression, including MMP expression and angiogenesis. The properties of Hyal1 suggest that it might contribute to the degradation of hyaluronan in tumors and the subsequent accumulation of sHA. Accumulation of Hyal1-produced sHA may therefore account for the association between Hyal1 and metastasis. Here we have investigated this hypothesis using mouse syngeneic breast tumor models. Specifically, we modulated Hyal1 expression and activity either in the tumor cells themselves, or in the stromal compartment by using Hyal1 knockout (KO) mice. These approaches did not change sHA levels in TIF, but nevertheless fostered metastasis to the lung in some of the models used in the study. Together, these data suggest that Hyal1 can promote lung metastasis in a manner that is not dependent on altered accumulation of sHA in TIF.
Collapse
Affiliation(s)
- Anja Schmaus
- Medical Faculty Mannheim, Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, Mannheim 68167, Germany Karlsruhe Institute of Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, Karlsruhe 76021, Germany
| | - Jonathan P Sleeman
- Medical Faculty Mannheim, Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, Mannheim 68167, Germany Karlsruhe Institute of Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, Karlsruhe 76021, Germany
| |
Collapse
|
31
|
Karbownik MS, Nowak JZ. Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep 2014; 65:1056-74. [PMID: 24399703 DOI: 10.1016/s1734-1140(13)71465-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/16/2013] [Indexed: 12/17/2022]
Abstract
The understanding of the role of hyaluronan in physiology and various pathological conditions has changed since the complex nature of its synthesis, degradation and interactions with diverse binding proteins was revealed. Initially perceived only as an inert component of connective tissue, it is now known to be involved in multiple signaling pathways, including those involved in cancer pathogenesis and progression. Hyaluronan presents a mixture of various length polymer molecules from finely fragmented oligosaccharides, polymers intermediate in size, to huge aggregates of high molecular weight hyaluronan. While large molecules promote tissue integrity and quiescence, the generation of breakdown products enhances signaling transduction, contributing to the pro-oncogenic behavior of cancer cells. Low molecular weight hyaluronan has well-established angiogenic properties, while the smallest hyaluronan oligomers may counteract tumor development. These equivocal properties make the role of hyaluronan in cancer biology very complex. This review surveys recent data on hyaluronan biosynthesis, metabolism, and interactions with its binding proteins called hyaladherins (CD44, RHAMM), providing themolecular background underlying its differentiated biological activity. In particular, the article critically presents current ideas on actual role of hyaluronan in cancer. The paper additionally maps a path towards promising novel anti-cancer therapeutics which target hyaluronan metabolic enzymes and hyaladherins, and constitute hyaluronan-based drug delivery systems.
Collapse
Affiliation(s)
- Michał S Karbownik
- Department of Pharmacology, Medical University of Lodz, Żeligowskiego 7/9, PL 90-752 Łódź, Poland. ;
| | | |
Collapse
|
32
|
Schmaus A, Klusmeier S, Rothley M, Dimmler A, Sipos B, Faller G, Thiele W, Allgayer H, Hohenberger P, Post S, Sleeman JP. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis. Br J Cancer 2014; 111:559-67. [PMID: 24937668 PMCID: PMC4119989 DOI: 10.1038/bjc.2014.332] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/09/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Association studies have implicated the glycosaminoglycan hyaluronan (hyaluronic acid, HA) and its degrading enzymes the hyaluronidases in tumour progression and metastasis. Oligosaccharides of degraded HA have been ascribed a number of biological functions that are not exerted by high-molecular-weight HA (HMW-HA). However, whether these small HA oligosaccharides (sHA) have a role in tumour progression currently remains uncertain due to an inability to analyse their concentration in tumours. METHODS We report a novel method to determine the concentration of sHA ranging from 6 to 25 disaccharides in tumour interstitial fluid (TIF). Levels of sHA were measured in TIF from experimental rat tumours and human colorectal tumours. RESULTS While the majority of HA in TIF is HMW-HA, concentrations of sHA up to 6 μg ml(-1) were detected in a subset of tumours, but not in interstitial fluid from healthy tissues. In a cohort of 72 colorectal cancer patients we found that increased sHA concentrations in TIF are associated with lymphatic vessel invasion by tumour cells and the formation of lymph node metastasis. CONCLUSIONS These data document for the first time the pathophysiological concentration of sHA in tumours, and provide evidence of a role for sHA in tumour progression.
Collapse
Affiliation(s)
- A Schmaus
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - S Klusmeier
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - M Rothley
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - A Dimmler
- Institut und Gemeinschaftspraxis für Pathologie an den St Vincentiuskliniken Karlsruhe, Südendstrasse 37, 76137 Karlsruhe, Germany
| | - B Sipos
- Universitätsklinikum Tübingen, Department of Pathology, Liebermeisterstrasse 8, 72076 Tübingen, Germany
| | - G Faller
- Institut und Gemeinschaftspraxis für Pathologie an den St Vincentiuskliniken Karlsruhe, Südendstrasse 37, 76137 Karlsruhe, Germany
| | - W Thiele
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| | - H Allgayer
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - P Hohenberger
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - S Post
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany
| | - J P Sleeman
- 1] Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany [2] Karlsruhe Institute for Technology (KIT), Campus Nord, Institut für Toxikologie und Genetik, Postfach 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
33
|
Moustakas A, Heldin P. TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta Gen Subj 2014; 1840:2621-34. [PMID: 24561266 DOI: 10.1016/j.bbagen.2014.02.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of cancer through stages that guide a benign hyperplastic epithelial tissue towards a fully malignant and metastatic carcinoma, is driven by genetic and microenvironmental factors that remodel the tissue architecture. The concept of epithelial-mesenchymal transition (EMT) has evolved to emphasize the importance of plastic changes in tissue architecture, and the cross-communication of tumor cells with various cells in the stroma and with specific molecules in the extracellular matrix (ECM). SCOPE OF THE REVIEW Among the multitude of ECM-embedded cytokines and the regulatory potential of ECM molecules, this article focuses on the cytokine transforming growth factor β (TGFβ) and the glycosaminoglycan hyaluronan, and their roles in cancer biology and EMT. For brevity, we concentrate our effort on breast cancer. MAJOR CONCLUSIONS Both normal and abnormal TGFβ signaling can be detected in carcinoma and stromal cells, and TGFβ-induced EMT requires the expression of hyaluronan synthase 2 (HAS2). Correspondingly, hyaluronan is a major constituent of tumor ECM and aberrant levels of both hyaluronan and TGFβ are thought to promote a wounding reaction to the local tissue homeostasis. The link between EMT and metastasis also involves the mesenchymal-epithelial transition (MET). ECM components, signaling networks, regulatory non-coding RNAs and epigenetic mechanisms form the network of regulation during EMT-MET. GENERAL SIGNIFICANCE Understanding the mechanism that controls epithelial plasticity in the mammary gland promises the development of valuable biomarkers for the prognosis of breast cancer progression and even provides new ideas for a more integrative therapeutic approach against disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
34
|
Abstract
Metastatic spread of breast cancer cells, facilitated by the epithelial-mesenchymal transition (EMT) process, is responsible for the majority of breast cancer mortality. Increased levels of hyaluronan due to deregulation of hyaluronan-synthesizing enzymes, like HAS2, and expression of CD44, the key receptor for hyaluronan, are correlated to poor outcome of patients with basal-like breast cancer. TGFβ induces HAS2 and CD44, both of which are required in the course of efficient TGFβ-induced EMT processes by mammary epithelial cells. Elucidation of the molecular mechanisms underlying tumor-stroma interactions in breast cancer including the regulation of HAS2 and CD44 expression may contribute to the development of better strategies to treat breast cancer patients.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Kaustuv Basu
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inna Kozlova
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Porsch
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Heldin P, Basu K, Olofsson B, Porsch H, Kozlova I, Kahata K. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J Biochem 2013; 154:395-408. [PMID: 24092768 DOI: 10.1093/jb/mvt085] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clinical and experimental data indicate that hyaluronan accumulates in breast cancer compared with normal breast epithelium, which correlates to poor prognosis. In this review, we discuss the expression of genes encoding enzymes that synthesize or degrade hyaluronan, i.e. hyaluronan synthases and hyaluronidases or bind hyaluronan, i.e. CD44 and receptor for hyaluronan-mediated motility (RHAMM, also designated as HMMR or CD168), in relation to breast cancer progression. Hyaluronan and hyaluronan receptors have multi-faceted roles in signalling events in breast cancer. A better understanding of the molecular mechanisms underlying these signalling pathways is highly warranted and may lead to improvement of cancer treatment.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
The roles of hyaluronan/RHAMM/CD44 and their respective interactions along the insidious pathways of fibrosarcoma progression. BIOMED RESEARCH INTERNATIONAL 2013; 2013:929531. [PMID: 24083250 PMCID: PMC3780471 DOI: 10.1155/2013/929531] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/02/2013] [Indexed: 02/07/2023]
Abstract
Fibrosarcomas are rare malignant mesenchymal tumors originating from fibroblasts. Importantly, fibrosarcoma cells were shown to have a high content and turnover of extracellular matrix (ECM) components including hyaluronan (HA), proteoglycans, collagens, fibronectin, and laminin. ECMs are complicated structures that surround and support cells within tissues. During cancer progression, significant changes can be observed in the structural and mechanical properties of the ECM components. Importantly, hyaluronan deposition is usually higher in malignant tumors as compared to benign tissues, predicting tumor progression in some tumor types. Furthermore, activated stromal cells are able to produce tissue structure rich in hyaluronan in order to promote tumor growth. Key biological roles of HA result from its interactions with its specific CD44 and RHAMM (receptor for HA-mediated motility) cell-surface receptors. HA-receptor downstream signaling pathways regulate in turn cellular processes implicated in tumorigenesis. Growth factors, including PDGF-BB, TGFβ2, and FGF-2, enhanced hyaluronan deposition to ECM and modulated HA-receptor expression in fibrosarcoma cells. Indeed, FGF-2 through upregulation of specific HAS isoforms and hyaluronan synthesis regulated secretion and net hyaluronan deposition to the fibrosarcoma pericellular matrix modulating these cells' migration capability. In this paper we discuss the involvement of hyaluronan/RHAMM/CD44 mediated signaling in the insidious pathways of fibrosarcoma progression.
Collapse
|
37
|
Siiskonen H, Poukka M, Tyynelä-Korhonen K, Sironen R, Pasonen-Seppänen S. Inverse expression of hyaluronidase 2 and hyaluronan synthases 1-3 is associated with reduced hyaluronan content in malignant cutaneous melanoma. BMC Cancer 2013; 13:181. [PMID: 23560496 PMCID: PMC3626669 DOI: 10.1186/1471-2407-13-181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 01/08/2023] Open
Abstract
Background Hyaluronan is an extracellular matrix glycosaminoglycan involved in invasion, proliferation and metastasis of various types of carcinomas. In many cancers, aberrant hyaluronan expression implicates disease progression and metastatic potential. Melanoma is an aggressive skin cancer. The role of hyaluronan in melanoma progression including benign nevi and lymph node metastases has not been investigated earlier, nor the details of its synthesis and degradation. Methods The melanocytic and dysplastic nevi, in situ melanomas, superficially and deeply invasive melanomas and their lymph node metastases were analysed immunohistochemically for the amount of hyaluronan, its cell surface receptor CD44, hyaluronan synthases 1–3 and hyaluronidases 1–2. Results Hyaluronan content of tumoral cells in deeply invasive melanomas and metastatic lesions was clearly reduced compared to superficial melanomas or benign lesions. Furthermore, hyaluronan content in the stromal cells of benign nevi was higher than in the premalignant or malignant tumors. The immunopositivity of hyaluronidase 2 was significantly increased in the premalignant and malignant lesions indicating its specific role in the degradation of hyaluronan during tumor progression. Similarly, the expression of hyaluronan synthases 1–2 and CD44 receptor was decreased in the metastases compared to the primary melanomas. Conclusions These findings suggest that the reciprocal relationship between the degrading and synthesizing enzymes account for the alterations in hyaluronan content during the growth of melanoma. These results provide new information about hyaluronan metabolism in benign, premalignant and malignant melanocytic tumors of the skin.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O.B. 1627, FIN-70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
38
|
de Sá VK, Carvalho L, Gomes A, Alarcão A, Silva MR, Couceiro P, Sousa V, Soares FA, Capelozzi VL. Role of the extracellular matrix in variations of invasive pathways in lung cancers. ACTA ACUST UNITED AC 2013; 46:21-31. [PMID: 23314337 PMCID: PMC3854345 DOI: 10.1590/1414-431x20122263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/06/2012] [Indexed: 01/28/2023]
Abstract
Among the most common features of highly invasive tumors, such as lung adenocarcinomas (AD) and squamous cell carcinomas (SqCC), is the massive degradation of the extracellular matrix. The remarkable qualitative and quantitative modifications of hyaluronidases (HAases), hyaluronan synthases (HAS), E-cadherin adhesion molecules, and the transforming growth factor β (TGF-β) may favor invasion, cellular motility, and proliferation. We examined HAase proteins (Hyal), HAS, E-cadherin, and TGF-β profiles in lung AD subtypes and SqCC obtained from smokers and non-smokers. Fifty-six patients, median age 64 years, who underwent lobectomy for AD (N = 31) and SqCC (N = 25) were included in the study. HAS-1, -2 and -3, and Hyal-1 and -3 were significantly more expressed by tumor cells than normal and stroma cells (P < 0.01). When stratified according to histologic types, HAS-3 and Hyal-1 immunoreactivity was significantly increased in tumor cells of AD (P = 0.01) and stroma of SqCC (P = 0.002), respectively. Tobacco history in patients with AD was significantly associated with increased HAS-3 immunoreactivity in tumor cells (P < 0.01). Stroma cells of SqCC from non-smokers presented a significant association with HAS-3 (P < 0.01). Hyal, HAS, E-cadherin, and TGF-β modulate a different tumor-induced invasive pathway in lung AD subgroups and SqCC. HAases in resected AD and SqCC were strongly related to the prognosis. Therefore, our findings suggest that strategies aimed at preventing high HAS-3 and Hyal-1 synthesis, or local responses to low TGF-β and E-cadherin, may have a greater impact in lung cancer prognosis.
Collapse
Affiliation(s)
- V K de Sá
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kultti A, Li X, Jiang P, Thompson CB, Frost GI, Shepard HM. Therapeutic targeting of hyaluronan in the tumor stroma. Cancers (Basel) 2012; 4:873-903. [PMID: 24213471 PMCID: PMC3712709 DOI: 10.3390/cancers4030873] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/12/2022] Open
Abstract
The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associated with a negative disease prognosis. Hyaluronan interacts with other extracellular molecules as well as cellular receptors to form a complex interaction network influencing physicochemical properties, signal transduction, and biological behavior of cancer cells. In preclinical animal models, enzymatic removal of hyaluronan is associated with remodeling of the tumor stroma, reduction of tumor interstitial fluid pressure, expansion of tumor blood vessels and facilitated delivery of chemotherapy. This leads to inhibition of tumor growth and increased survival. Current evidence shows that abnormal accumulation of hyaluronan may be an important stromal target for cancer therapy. In this review we highlight the role of hyaluronan and hyaluronan-mediated interactions in cancer, and discuss historical and recent data on hyaluronidase-based therapies and the effect of hyaluronan removal on tumor growth.
Collapse
Affiliation(s)
- Anne Kultti
- Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (H.M.S.)
| | - Xiaoming Li
- Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (X.L.); (P.J.); (C.B.T.)
| | - Ping Jiang
- Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (X.L.); (P.J.); (C.B.T.)
| | - Curtis B. Thompson
- Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (X.L.); (P.J.); (C.B.T.)
| | - Gregory I. Frost
- Department of General and Administrative, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mail: (G.I.F.)
| | - H. Michael Shepard
- Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121, USA; E-Mails: (H.M.S.)
| |
Collapse
|
40
|
Kozlova I, Ruusala A, Voytyuk O, Skandalis SS, Heldin P. IQGAP1 regulates hyaluronan-mediated fibroblast motility and proliferation. Cell Signal 2012; 24:1856-62. [DOI: 10.1016/j.cellsig.2012.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
41
|
Furukawa T, Arai M, Garcia-Martin F, Amano M, Hinou H, Nishimura SI. Glycoblotting-based high throughput protocol for the structural characterization of hyaluronan degradation products during enzymatic fragmentation. Glycoconj J 2012; 30:171-82. [DOI: 10.1007/s10719-012-9395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 12/30/2022]
|
42
|
Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, Pavão MS, Tzanakakis GN, Karamanos NK. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 2012; 279:1177-97. [DOI: 10.1111/j.1742-4658.2012.08529.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Cordo Russo RI, Ernst G, Lompardía S, Blanco G, Álvarez É, Garcia MG, Hajos S. Increased hyaluronan levels and decreased dendritic cell activation are associated with tumor invasion in murine lymphoma cell lines. Immunobiology 2011; 217:842-50. [PMID: 22304941 DOI: 10.1016/j.imbio.2011.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 12/15/2011] [Indexed: 12/24/2022]
Abstract
Hyaluronan (HA), a component of the extracellular matrix surrounding tumors, modulates tumor progression and the immune response. Dendritic cells (DC) may tolerize or stimulate immunity against cancer. In this report, we study the association between tumor progression, HA levels and DC activation in a lymphoma model. Mice injected with the cells with highest invasive capacity (LBR-) presented increased HA in serum and lymph nodes, and decreased DC activation in infiltrated lymph nodes and liver. These findings could be related to lack of an effective antitumor immune response and suggest that serum HA levels could have a prognostic value in hematological malignancies.
Collapse
Affiliation(s)
- Rosalia I Cordo Russo
- Department of Immunology, School of Pharmacy and Biochemistry, University of Buenos Aires, IDEHU-CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
44
|
Bernert B, Porsch H, Heldin P. Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). J Biol Chem 2011; 286:42349-42359. [PMID: 22016393 DOI: 10.1074/jbc.m111.278598] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Invasion and metastasis are the primary causes of breast cancer mortality, and increased knowledge about the molecular mechanisms involved in these processes is highly desirable. High levels of hyaluronan in breast tumors have been correlated with poor patient survival. The involvement of hyaluronan in the early invasive phase of a clone of breast cancer cell line MDA-MB-231 that forms bone metastases was studied using an in vivo-like basement membrane model. The metastatic to bone tumor cells exhibited a 7-fold higher hyaluronan-synthesizing capacity compared with MDA-MB-231 cells predominately due to an increased expression of hyaluronan synthase 2 (HAS2). We found that knockdown of HAS2 completely suppressed the invasive capability of these cells by the induction of tissue metalloproteinase inhibitor 1 (TIMP-1) and dephosphorylation of focal adhesion kinase. HAS2 knockdown-mediated inhibition of basement membrane remodeling was rescued by HAS2 overexpression, transfection with TIMP-1 siRNA, or addition of TIMP-1-blocking antibodies. Moreover, knockdown of HAS2 suppressed the EGF-mediated induction of the focal adhesion kinase/PI3K/Akt signaling pathway. Thus, this study provides new insights into a possible mechanism whereby HAS2 enhances breast cancer invasion.
Collapse
Affiliation(s)
- Berit Bernert
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Helena Porsch
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden.
| |
Collapse
|
45
|
Choi KY, Saravanakumar G, Park JH, Park K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces 2011; 99:82-94. [PMID: 22079699 DOI: 10.1016/j.colsurfb.2011.10.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 01/01/2023]
Abstract
The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells. The aim of this review is to highlight the significance of HA in cancer, and to explore the recent advances of HA-based drug carriers towards cancer imaging and therapeutics.
Collapse
Affiliation(s)
- Ki Young Choi
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
46
|
Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis. PLoS One 2011; 6:e22836. [PMID: 21829529 PMCID: PMC3145763 DOI: 10.1371/journal.pone.0022836] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/29/2011] [Indexed: 02/03/2023] Open
Abstract
Hyaluronic acid (HA) is a component of the Extra-cellular matrix (ECM), it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase) is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1) is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.
Collapse
|
47
|
Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 2011; 278:1429-43. [PMID: 21362138 PMCID: PMC3166356 DOI: 10.1111/j.1742-4658.2011.08071.x] [Citation(s) in RCA: 372] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is becoming increasingly clear that signals generated in tumor microenvironments are crucial to tumor cell behavior, such as survival, progression and metastasis. The establishment of these malignant behaviors requires that tumor cells acquire novel adhesion and migration properties to detach from their original sites and to localize to distant organs. CD44, an adhesion/homing molecule, is a major receptor for the glycosaminoglycan hyaluronan, which is one of the major components of the tumor extracellular matrix. CD44, a multistructural and multifunctional molecule, detects changes in extracellular matrix components, and thus is well positioned to provide appropriate responses to changes in the microenvironment, i.e. engagement in cell-cell and cell-extracellular matrix interactions, cell trafficking, lymph node homing and the presentation of growth factors/cytokines/chemokines to co-ordinate signaling events that enable the cell responses that change in the tissue environment. The potential involvement of CD44 variants (CD44v), especially CD44v4-v7 and CD44v6-v9, in tumor progression has been confirmed for many tumor types in numerous clinical studies. The downregulation of the standard CD44 isoform (CD44s) in colon cancer is postulated to result in increased tumorigenicity. CD44v-specific functions could be caused by their higher binding affinity than CD44s for hyaluronan. Alternatively, CD44v-specific functions could be caused by differences in associating molecules, which may bind selectively to the CD44v exon. This minireview summarizes how the interaction between hyaluronan and CD44v can serve as a potential target for cancer therapy, in particular how silencing CD44v can target multiple metastatic tumors.
Collapse
Affiliation(s)
- Suniti Misra
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Uppsala University Biomedical Centre, Box 595, SE-75124 Uppsala, Sweden
| | - Vincent C. Hascall
- Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Nikos K. Karamanos
- Department of Chemistry, Laboratory of Biochemistry, University of Patras, Patras, Greece
| | - Spyros S. Skandalis
- Ludwig Institute for Cancer Research, Uppsala University Biomedical Centre, Box 595, SE-75124 Uppsala, Sweden
| | - Roger R. Markwald
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shibnath Ghatak
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
48
|
Tan JX, Wang XY, Li HY, Su XL, Wang L, Ran L, Zheng K, Ren GS. HYAL1 overexpression is correlated with the malignant behavior of human breast cancer. Int J Cancer 2011; 128:1303-15. [PMID: 20473947 DOI: 10.1002/ijc.25460] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronic acid (HA) is a component of the ECM, and hyaluronidase (HAase) is a HA-degrading endoglycosidase. Levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1) is the major tumor-derived HAase. In this study, we detected HYAL1 expression levels in breast cancer cells and tissues, and measured the amount HAase activity in breast cancer cells. Compared with nonmalignant breast cell line HBL-100 and normal breast tissues, HYAL1 were overexpressed in breast cancer cell lines MDA-MB-231, MCF-7, invasive duct cancer tissues and metastatic lymph nodes, respectively. Accordingly, the amount HAase activity in MDA-MB-231 and MCF-7 was higher than that in HBL-100. In addition, knockdown of HYAL1 expression in MDA-MB-231 and MCF-7 cells resulted in decreased cell growth, adhesion, invasion and angiogenesis potential. Meantime, the HYAL1 knockdown markedly inhibited breast cancer cell xenograft tumor growth and microvessel density. Further studies showed that the HYAL1, HYAL2 and HA were elevated in breast cancer, and HYAL1 could downregulate HA expression. In conclusion, HYAL1 may be a potential prognostic marker and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Jin-Xiang Tan
- Department of Endocrine Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nykopp TK, Rilla K, Tammi MI, Tammi RH, Sironen R, Hämäläinen K, Kosma VM, Heinonen S, Anttila M. Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma. BMC Cancer 2010; 10:512. [PMID: 20875124 PMCID: PMC2956733 DOI: 10.1186/1471-2407-10-512] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/27/2010] [Indexed: 12/21/2022] Open
Abstract
Background Hyaluronan accumulation correlates with the degree of malignancy in many solid tumor types, including malignant endometrial carcinomas. To elucidate the mechanism of hyaluronan accumulation, we examined the expression levels of the hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), and correlated them with hyaluronan content and HAS1-3 immunoreactivity. Methods A total of 35 endometrial tissue biopsies from 35 patients, including proliferative and secretory endometrium (n = 10), post-menopausal proliferative endometrium (n = 5), complex atypical hyperplasia (n = 4), grade 1 (n = 8) and grade 2 + 3 (n = 8) endometrioid adenocarcinomas were divided for gene expression by real-time RT-PCR, and paraffin embedded blocks for hyaluronan and HAS1-3 cytochemistry. Results The mRNA levels of HAS1-3 were not consistently changed, while the immunoreactivity of all HAS proteins was increased in the cancer epithelium. Interestingly, HAS3 mRNA, but not HAS3 immunoreactivity, was increased in post-menopausal endometrium compared to normal endometrium (p = 0.003). The median of HYAL1 mRNA was 10-fold and 15-fold lower in both grade 1 and grade 2+3 endometrioid endometrial cancers, as compared to normal endometrium (p = 0.004-0.006), and post-menopausal endometrium (p = 0.002), respectively. HYAL2 mRNA was also reduced in cancer (p = 0.02) and correlated with HYAL1 (r = 0.8, p = 0.0001). There was an inverse correlation between HYAL1 mRNA and the epithelial hyaluronan staining intensity (r = -0.6; P = 0.001). Conclusion The results indicated that HYAL1 and HYAL2 were coexpressed and significantly downregulated in endometrioid endometrial cancer and correlated with the accumulation of hyaluronan. While immunoreactivity for HASs increased in the cancer cells, tumor mRNA levels for HASs were not changed, suggesting that reduced turnover of HAS protein may also have contributed to the accumulation of hyaluronan.
Collapse
Affiliation(s)
- Timo K Nykopp
- Institute of Clinical Medicine, Department of Pathology and Forensic Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cytokines and growth factors stimulate hyaluronan production: role of hyaluronan in epithelial to mesenchymal-like transition in non-small cell lung cancer. J Biomed Biotechnol 2010; 2010:485468. [PMID: 20671927 PMCID: PMC2910509 DOI: 10.1155/2010/485468] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 03/23/2010] [Accepted: 05/05/2010] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the role of hyaluronan (HA) in non-small cell lung cancer (NSCLC) since close association between HA level and malignancy has been reported. HA is an abundant extracellular matrix component and its synthesis is regulated by growth factors and cytokines that include epidermal growth factor (EGF) and interleukin-1β (IL-1β). We showed that treatment with recombinant EGF and IL-1β, alone or in combination with TGF-β, was able to stimulate HA production in lung adenocarcinoma cell line A549. TGF-β/IL-1β treatment induced epithelial to mesenchymal-like phenotype transition (EMT), changing cell morphology and expression of vimentin and E-cadherin. We also overexpressed hyaluronan synthase-3 (HAS3) in epithelial lung adenocarcinoma cell line H358, resulting in induced HA expression, EMT phenotype, enhanced MMP9 and MMP2 activities and increased invasion. Furthermore, adding exogenous HA to A549 cells and inducing HA H358 cells resulted in increased resistance to epidermal growth factor receptor (EGFR) inhibitor, Iressa. Together, these results suggest that elevated HA production is able to induce EMT and increase resistance to Iressa in NSCLC. Therefore, regulation of HA level in NSCLC may be a new target for therapeutic intervention.
Collapse
|