1
|
Kim JH, Ahn JS, Lee DS, Hong SH, Lee HJ. Anti-Cancer Effect of Neural Stem Cells Transfected with Carboxylesterase and sTRAIL Genes in Animals with Brain Lesions of Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1156. [PMID: 37631070 PMCID: PMC10458428 DOI: 10.3390/ph16081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.
Collapse
Affiliation(s)
- Jung Hak Kim
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Ho Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hong J. Lee
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
2
|
Bacolod MD, Fisher PB, Barany F. Multi-CpG linear regression models to accurately predict paclitaxel and docetaxel activity in cancer cell lines. Adv Cancer Res 2022; 158:233-292. [PMID: 36990534 DOI: 10.1016/bs.acr.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The microtubule-targeting paclitaxel (PTX) and docetaxel (DTX) are widely used chemotherapeutic agents. However, the dysregulation of apoptotic processes, microtubule-binding proteins, and multi-drug resistance efflux and influx proteins can alter the efficacy of taxane drugs. In this review, we have created multi-CpG linear regression models to predict the activities of PTX and DTX drugs through the integration of publicly available pharmacological and genome-wide molecular profiling datasets generated using hundreds of cancer cell lines of diverse tissue of origin. Our findings indicate that linear regression models based on CpG methylation levels can predict PTX and DTX activities (log-fold change in viability relative to DMSO) with high precision. For example, a 287-CpG model predicts PTX activity at R2 of 0.985 among 399 cell lines. Just as precise (R2=0.996) is a 342-CpG model for predicting DTX activity in 390 cell lines. However, our predictive models, which employ a combination of mRNA expression and mutation as input variables, are less accurate compared to the CpG-based models. While a 290 mRNA/mutation model was able to predict PTX activity with R2 of 0.830 (for 546 cell lines), a 236 mRNA/mutation model could calculate DTX activity at R2 of 0.751 (for 531 cell lines). The CpG-based models restricted to lung cancer cell lines were also highly predictive (R2≥0.980) for PTX (74 CpGs, 88 cell lines) and DTX (58 CpGs, 83 cell lines). The underlying molecular biology behind taxane activity/resistance is evident in these models. Indeed, many of the genes represented in PTX or DTX CpG-based models have functionalities related to apoptosis (e.g., ACIN1, TP73, TNFRSF10B, DNASE1, DFFB, CREB1, BNIP3), and mitosis/microtubules (e.g., MAD1L1, ANAPC2, EML4, PARP3, CCT6A, JAKMIP1). Also represented are genes involved in epigenetic regulation (HDAC4, DNMT3B, and histone demethylases KDM4B, KDM4C, KDM2B, and KDM7A), and those that have never been previously linked to taxane activity (DIP2C, PTPRN2, TTC23, SHANK2). In summary, it is possible to accurately predict taxane activity in cell lines based entirely on methylation at multiple CpG sites.
Collapse
|
3
|
Yang N, Yao S, Liu D. Tumor necrosis factor-related apoptosis-inducing ligand additive with Iodine-131 of inhibits non-small cell lung cancer cells through promoting apoptosis. Oncol Lett 2018; 16:276-284. [PMID: 29928412 PMCID: PMC6006446 DOI: 10.3892/ol.2018.8635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/12/2018] [Indexed: 11/26/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for ~80% of human lung cancer cases and is the most common cause of cancer-associated mortality worldwide. Reports have indicated that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Iodine-131 (I-131) can induce tumor cell apoptosis. The purpose of the present study was to investigate the additive efficacy of TRAIL and I-131 on NSCLC cells. The present study demonstrated that additive treatment of TRAIL and I-131 (TRAIL-I-131) significantly inhibited the growth and aggressiveness of NSCLC cells compared with single TRAIL or I-131 treatment. Results demonstrated that TRAIL-I-131 treatment induced apoptosis of NSCLC cells, with western blot analysis confirming that TRAIL-I-131 treatment increased proapoptotic Bad and Bax expression levels, while antiapoptotic Bcl-2 and Bcl-w protein levels were decreased in NSCLC cells. The present study demonstrated that TRAIL-I-131 treatment inhibited vascular endothelial growth factor (VEGF) and activator protein-1 (AP-1) in NSCLC cells. Potential mechanism analyses identified that TRAIL-I-131 treatment induced apoptosis of NSCLC cells through caspase-9 activation. In vivo assays revealed that TRAIL-I-131 treatment significantly inhibited NSCLC tumor growth and increased apoptotic bodies in tumor tissues. Immunohistology demonstrated that caspase-9 was upregulated and VEGF was downregulated in tumor tissues in TRAIL-I-131-treated tumors. In conclusion, these results indicate that TRAIL combined with I-131 promoted apoptosis of NSCLC through caspase-9 activation, which may be a promising anticancer therapeutic schedule for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nuclear Medicine, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Shuzhan Yao
- Positron Emission Tomography/Computed Tomography Center, Shandong Provincial Hospital, Jinan, Shandong 250012, P.R. China
| | - Dong Liu
- Department of Nuclear Medicine, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
4
|
Chen L, Qiu Y, Hao Z, Cai J, Zhang S, Liu Y, Zheng D. A novel humanized anti-tumor necrosis factor-related apoptosis-inducing ligand-R2 monoclonal antibody induces apoptotic and autophagic cell death. IUBMB Life 2017; 69:735-744. [PMID: 28748573 DOI: 10.1002/iub.1659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/09/2017] [Indexed: 02/02/2023]
Abstract
It is well known that the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/TNFSF10) is specifically expressed in various tumor cells, but less or no expression in most normal tissues and cells. While TRAIL engages with its native death receptors, TRAIL receptor 1 (TRAIL-R1) or 2 (TRAIL-R2), usually elicits the tumor cell death by apoptosis. In this study, we report that a novel humanized monoclonal antibody against TRAIL-R2 (named as zaptuzumab) well remain the biological activity of the parental mouse antibody AD5-10 inducing cell death in various cancer cells, but little effect on normal cells. Zaptuzumab also markedly inhibited the tumor growth in the mouse xenograft of NCI-H460 without toxicity to the liver and kidney, and the efficacy of tumor suppression was increased significantly while it combined with cis-dichlorodiamineplatinum. Especially, 131 I-labeled zaptuzumab injected into mouse tail vein specifically targeted to the xenograft of the lung cancer cells. Confocal analysis showed that zaptuzumab bound with TRAIL-R2 on cell surface could be quickly internalized and transferred into the lysosome. Furthermore, zaptuzumab possessed a high level of antibody-dependent cytotoxicity as well as complement-dependent cytotoxicity. Study on the mechanisms of cell death induced by zaptuzumab showed that it efficiently induced both caspase-dependent apoptosis and autophagic cell death. These data suggest that the humanized anti-TRAIL-R2 monoclonal antibody or the second generation of the antibody may have an important clinical usage for cancer immunotherapy. © 2017 IUBMB Life, 69(9):735-744, 2017.
Collapse
Affiliation(s)
- Longfei Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhe Qiu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenliang Hao
- Peking Union Medical College Hospital, Beijing, China
| | - Jiong Cai
- Peking Union Medical College Hospital, Beijing, China
| | - Shuyong Zhang
- Obio Technology (Shanghai) Corp. Ltd, Shanghai, China
| | - Yanxin Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dexian Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Minero VG, De Stefanis D, Costelli P, Baccino FM, Bonelli G. In vitro and in vivo conditional sensitization of hepatocellular carcinoma cells to TNF-induced apoptosis by taxol. Cell Cycle 2015; 14:1090-102. [PMID: 25564714 DOI: 10.1080/15384101.2014.1000695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
High mortality among hepatocellular carcinoma (HCC) patients reflects both late diagnosis and low curability, due to pharmacoresistance. Taxol (TAX) is toxic for many human HCC-derived cell lines, yet its clinical efficacy on HCCs is poor. Combining TAX with other drugs appears a promising possibility to overcome such refractoriness. We analyzed whether combining tumor necrosis factor (TNF) with TAX would improve their toxicity. Human HCC-derived cell lines were treated with TAX or TNF, alone or combined. Apoptosis was assessed by morphology and flow-cytometry. Several pro- and anti-apoptotic molecules were evaluated by western blotting and/or enzymatic assay. After a 24 hour treatment, TNF was ineffective and TAX modestly cytotoxic, whereas HCC cells were conditionally sensitized to TNF by TAX. Indeed some relevant parameters were shifted to a prodeath setting: TNF-receptor 1 was increased, SOCS3, c-FLIP and pSTAT3 were markedly downregulated. These observations provide a significant clue to critically improve the drug susceptibility of HCC cells by combining 2 agents, TAX and TNF. The sequential application of TAX at a low dosage followed by TNF for only a short time triggered a strong apoptotic response. Of interest, prior TAX administration could also sensitize to TNF-induced apoptosis in the Yoshida AH-130 hepatoma transplanted in mice. Therefore, scrutinizing the possibility to develop similar combination drug regimens in suitable preclinical models seems highly advisable.
Collapse
Key Words
- COL, colchicine
- DAPI, 4,6-diamidino-2-phenylindole dihydrochloride
- HCC, hepatocellular carcinoma
- NOC, nocodazole
- SOCS3
- SOCS3, suppressor of cytokine signaling 3
- STAT3, signal transducer and activator of tanscription 3
- TAX
- TAX, taxol (paclitaxel)
- TNF
- TNF, tumor necrosis factor-α
- TNF-R1, TNF-receptor 1
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- apoptosis
- hepatocellular carcinoma
Collapse
Affiliation(s)
- V G Minero
- a Department of Clinical and Biological Sciences ; Experimental Medicine and Clinical Pathology Unit; University of Turin ; Turin , Italy
| | | | | | | | | |
Collapse
|
6
|
Soria JC, Márk Z, Zatloukal P, Szima B, Albert I, Juhász E, Pujol JL, Kozielski J, Baker N, Smethurst D, Hei YJ, Ashkenazi A, Stern H, Amler L, Pan Y, Blackhall F. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol 2011; 29:4442-51. [PMID: 22010015 DOI: 10.1200/jco.2011.37.2623] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To evaluate the efficacy and safety of dulanermin combined with paclitaxel and carboplatin (PC) and bevacizumab (PCB) as first-line treatment for advanced or recurrent non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with squamous NSCLC and/or CNS metastases received PC every 3 weeks alone (arm 1) or with dulanermin 8 mg/kg for 5 days (arm 2). Patients with nonsquamous NSCLC received PCB alone (arm 3) or with dulanermin 8 mg/kg for 5 days (arm 4) or 20 mg/kg for 2 days (arm 5). The primary end point was the objective response rate (ORR). RESULTS Overall, 213 patients were randomly assigned (arm 1, n = 41; arm 2, n = 39; arm 3, n = 42; arm 4, n = 40; arm 5, n = 41). The ORR in arms 1 to 5 was 39% (95% CI, 24% to 56%), 38% (95% CI, 24% to 54%), 50% (95% CI, 35% to 65%), 40% (95% CI, 25% to 56%), and 40% (95% CI, 25% to 56%), respectively. The odds ratio for ORR was 1.04 (P = 1.000) for arm 1 versus arm 2, 1.53 (P = .391) for arm 3 and versus arm 4, and 1.53 (P = .391) for arm 3 versus arm 5. The most common grade ≥ 3 adverse events were neutropenia, asthenia, anemia, thrombocytopenia, and hemoptysis. Of 161 available serum samples, a trend toward increased caspase-cleaved cytokeratin-18 was observed after dulanermin treatment in cycles 1 and 2. Among 84 patients evaluated for GalNT14 expression, there was a trend toward favorable progression-free survival and overall survival with dulanermin treatment in those with high GalNT14 expression. CONCLUSION The addition of dulanermin to PC and PCB did not improve outcomes in unselected patients with previously untreated advanced or recurrent NSCLC.
Collapse
|
7
|
TRAIL receptor targeting therapies for non-small cell lung cancer: Current status and perspectives. Drug Resist Updat 2010; 13:2-15. [DOI: 10.1016/j.drup.2009.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 11/25/2009] [Indexed: 12/17/2022]
|
8
|
Paclitaxel promotes a caspase 8-mediated apoptosis through death effector domain association with microtubules. Oncogene 2009; 28:3551-62. [PMID: 19668227 PMCID: PMC2851247 DOI: 10.1038/onc.2009.210] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubule-perturbing drugs have become front line chemotherapeutics, inducing cell cycle crisis as a major mechanism of action. However, these agents exhibit pleiotropic effects on cells, and can induce apoptosis via other means. Paclitaxel, a microtubule-stabilizing agent, induces a caspase-dependent apoptosis, though the precise mechanism(s) remain unclear. Here, we used genetic approaches to evaluate the role of caspase 8 in paclitaxel-mediated apoptosis. We observed that caspase 8-expressing cells are more sensitive to paclitaxel than caspase 8-deficient cells. Mechanistically, caspase 8 was found associated with microtubules, and this interaction increased following paclitaxel-treatment. The prodomains (DEDs) of caspase 8 were sufficient for interaction with microtubules, but the caspase 8 holoprotein was required for apoptosis. DED-only forms of caspase 8 were found in both primary and tumor cell lines, associating with perinuclear microtubules and the centrosome. Microtubule-association, and paclitaxel-sensitivity, depends upon a critical lysine (K156) within a microtubule-binding motif (KLD) in DED-b of caspase 8. The results reveal an unexpected pathway of apoptosis mediated by caspase 8.
Collapse
|
9
|
Trail Receptors: Targets for Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:127-58. [DOI: 10.1007/978-1-4020-6554-5_7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Felber M, Sonnemann J, Beck JF. Inhibition of novel protein kinase Cɛ augments TRAIL-induced cell death in A549 lung cancer cells. Pathol Oncol Res 2007; 13:295-301. [DOI: 10.1007/bf02940308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 09/20/2007] [Indexed: 11/29/2022]
|
11
|
Yoo GH, Tran VR, Lemonnier LA, Ezzat WH, Subramanian G, Piechocki MP, Ensley JF, Lonardo F, Kim H, Lin HS. BMS-275183-induced gene expression patterns in head and neck carcinoma. Am J Otolaryngol 2007; 28:309-15. [PMID: 17826531 DOI: 10.1016/j.amjoto.2006.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Indexed: 02/06/2023]
Abstract
PURPOSE BMS-275183 is an orally bioavailable taxane that has antitumor activity in preclinical cancer models. However, limited BMS-275183 studies have been performed in head and neck squamous cell carcinoma (HNSCC) cell lines. The purpose of this study is to identify the biological activity of BMS-275183 on HNSCC. MATERIALS AND METHODS Head and neck squamous cell carcinoma cell lines, HN6, HN12, and HN30, were exposed to BMS-275183. BMS-275183-induced growth suppression, cell-cycle arrest, and apoptosis were measured. Then, expression of selected proteins that were induced by BMS-275183 was determined by Western blot analysis. RESULTS BMS-275183 suppressed proliferation and induced G(2)M arrest and apoptosis in all HNSCC cell lines tested. BMS-275183 altered the expression of cell-cycle regulators, such as cyclin A and cyclin B1. The expression of E2F and p27 was decreased and increased, respectively, in all HNSCC cell lines. Cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) were increased in HN6 and HN12 cells. epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) expression were decreased by BMS-275183 in HN6 and HN30 cell lines, whereas phosphorylated epidermal growth factor receptor (pEGFR) was decreased in only HN6 cells. CONCLUSIONS BMS-275183 induced cellular apoptosis, cell-cycle arrest, and altered gene expression in HNSCC via molecular pathways similar to other taxanes. These preclinical experiments suggest that BMS-275183 may be useful in treating HNSCC and that the aforementioned genes can potentially be used as surrogate end-point biomarkers.
Collapse
Affiliation(s)
- George H Yoo
- Department of Otolaryngology--Head and Neck Surgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Liang CH, Shiu LY, Chang LC, Sheu HM, Kuo KW. Solamargine upregulation of Fas, downregulation of HER2, and enhancement of cytotoxicity using epirubicin in NSCLC cells. Mol Nutr Food Res 2007; 51:999-1005. [PMID: 17639997 DOI: 10.1002/mnfr.200700044] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nonsmall-cell lung cancer (NSCLC) is not generally a chemosensitive tumor, and the mechanism of resistance to the relevant anticancer drugs has not been fully elucidated. Solamargine (SM), the major steroidal glycoalkaloids extracted from the Chinese herb Solanum, inhibits the growth of human tumor cells. We have previously demonstrated that SM regulates tumor necrosis factor receptors (TNFRs)- and mitochondria-mediated pathways and sensitizes NSCLC cells to initiate apoptosis. Interestingly, this investigation reveals that SM up-regulated Fas expression and down-regulated the expression of HER2, whose overexpression is associated with resistance to drugs, and promotes chemotherapy-induced apoptosis in NSCLC A549 and H441 cells. After treatment with SM, the expression of HER2 mRNA was correlated with the expression of topoisomerase IIalpha (TOP2A) mRNA. The combinatory use of low concentrations of SM with low-toxic topoisomerase II inhibitor epirubicin accelerated apoptotic cell death. Therefore, the downregulation of the HER2 and TOP2A expression by SM with epirubicin may partially explain the SM and epirubicin cytotoxicity synergy effect in NSCLC. Results of this study suggest that SM induces Fas and TNFR-induced NSCLC cell apoptosis and reduces HER2 expression. These findings provide the synergistic therapeutic interaction between SM and epirubicin, suggesting that such combinations may be effectively exploited in future human cancer clinical trials.
Collapse
Affiliation(s)
- Chia-Hua Liang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Rosenthal DI, Fuller CD, Machtay M, Algazy KM, Meyer DM, Kaiser LR, Yardley DA, Loiacano ME, Carbone DP. Phase I Study of Paclitaxel Given by Seven-Week Continuous Infusion Concurrent with Radiation Therapy for Locally Advanced Non–Small Cell Lung Cancer. J Thorac Oncol 2006. [DOI: 10.1016/s1556-0864(15)31511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Phase I Study of Paclitaxel Given by Seven-Week Continuous Infusion Concurrent with Radiation Therapy for Locally Advanced Non???Small Cell Lung Cancer. J Thorac Oncol 2006. [DOI: 10.1097/01243894-200601000-00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Fennell DA. Caspase Regulation in Non–Small Cell Lung Cancer and its Potential for Therapeutic Exploitation. Clin Cancer Res 2005; 11:2097-105. [PMID: 15788654 DOI: 10.1158/1078-0432.ccr-04-1482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastatic non-small cell lung cancer (NSCLC, stages IIIB/IV) is one of the most common and rapidly lethal causes of cancer related mortality worldwide. Efficacy of chemotherapy, the mainstay of treatment, is limited due to resistance in the vast majority of patients. NSCLC cells exhibit intrinsic apoptosis resistance. Understanding the molecular basis of this phenotype is critical, if therapy is to move beyond the therapeutic plateau that has been reached with conventional chemotherapy. Caspases occupy a pivotal position in the final common pathway of apoptosis. Increasing evidence suggests that these proteases are constitutively inhibited in NSCLC. This review discusses current knowledge relating to caspase regulation in NSCLC and highlights novel strategies for reversing the apoptosis resistant phenotype, with potential to accelerate development of effective therapy.
Collapse
Affiliation(s)
- Dean A Fennell
- Thoracic Oncology Research Group, Centre for Cancer Research and Cell Biology, Oncology, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, Northern Ireland.
| |
Collapse
|
16
|
Yoo GH, Piechocki MP, Oliver J, Lonardo F, Zumstein L, Lin HS, Kim H, Shibuya TY, Shehadeh N, Ensley JF. Enhancement of Ad-p53 Therapy with Docetaxel in Head and Neck Cancer. Laryngoscope 2004; 114:1871-9. [PMID: 15510008 DOI: 10.1097/01.mlg.0000147914.51239.ed] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this project was to determine the mechanisms in which docetaxel enhances Ad-p53 tumor suppressive effects in head and neck cancer. BACKGROUND In advanced head and neck squamous cell carcinoma (HNSCC), the 5-year survival rate is less than 40%. Because patients with advanced HNSCC have a high rate of local-regional failure (40-60%) with existing treatment modalities, aggressive local therapy approaches need to be developed. Previous data show that docetaxel or Ad-p53 alone have significant anti-tumor activity in HNSCC. Before testing whether a combination approach (Ad-p53 and docetaxel) could be developed in clinical trials, preclinical experiments were performed. METHODS The p53 gene was overexpressed in 2 head and neck squamous carcinoma (HNSCC) cell lines, HN30 and HN12, and a murine Balb/c mucoepidermoid carcinoma (BMEC) cell line. Docetaxel's enhancement of adenoviral transduction (bGAL expression), coxsakie-adenovirus receptor (CAR) expression, and Ad-p53 induction of apoptosis (Annexin V expression) were measured. The modulation of regulators in the cell cycle, apoptosis and signal transduction pathways were measured using Western blot. RESULTS Docetaxel increased adenoviral transduction, which was dependent on the dose of docetaxel and levels of Ad-bGAL. The enhanced viral transduction was due in part to the upregulation of the CAR protein. Pretreatment with docetaxel enhanced Ad-p53-induced apoptosis through increased expression of exogenous p53. Together, the combination of docetaxel and Ad-p53 altered expression of key regulators in the cell cycle, apoptosis and signal transduction pathways with an increase in the expression of p53, bax, cleaved PARP, cleaved caspase-3 and phosphorylation of c-Jun at position at Ser. Cyclin A and B1 expression were down regulated by docetaxel and Ad-p53. When comparing the docetaxel-resistant to sensitive cell lines, the altered expression of p27 and skp1 by docetaxel and Ad-p53 were dissimilar between these cell lines. CONCLUSIONS Docetaxel enhanced Ad-p53 transduction and increased expression of exogenous p53 gene transfer, apoptosis, and antitumor mechanisms. These results support a clinical combination of docetaxel with p53 gene therapy in patients with head and neck cancer.
Collapse
Affiliation(s)
- George H Yoo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rubinchik S, Yu H, Woraratanadharm J, Voelkel-Johnson C, Norris JS, Dong JY. Enhanced apoptosis of glioma cell lines is achieved by co-delivering FasL-GFP and TRAIL with a complex Ad5 vector. Cancer Gene Ther 2004; 10:814-22. [PMID: 14605667 DOI: 10.1038/sj.cgt.7700651] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumors (BTs) are among the most malignant forms of human cancer. Unfortunately, current treatments are often ineffective and produce severe side effects. Cytotoxic gene therapy is an alternative treatment strategy, with the potential advantages of reduced toxicity to normal brain tissue. Apoptosis-inducing "death ligands" Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) are genes with substantial cytotoxic activity in susceptible tumor cells. Here, we compared the effectiveness of Ad vector-mediated delivery of Fas ligand-green fluorescent protein (FasL-GFP) fusion protein, human TRAIL, and both genes simultaneously. We examined a panel of 13 cell lines (eight derived from primary isolates) for susceptibility to Ad5-based vector infection and for sensitivity to FasL- and TRAIL-mediated apoptosis. All cell lines were efficiently transduced, but, as expected, varied in their sensitivity to ligand-induced apoptosis. Generally, sensitivity to FasL-GFP correlated with cell surface FasR levels, but no such correlation was seen for TRAIL and its functional receptors, DR4 and DR5. The vector expressing both FasL-GFP and TRAIL was more effective than either of the single-gene vectors at comparable transduction levels, and it was effective against a broader range of cell lines. In five cell lines, coexpression resulted in apoptosis levels greater than those predicted for strictly additive activity of the two death ligands. We believe that Ad vector-mediated delivery of multiple death ligands may be developed as a potential BT therapy, either alone or in conjunction with surgical resection of the primary tumor.
Collapse
Affiliation(s)
- Semyon Rubinchik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 201, Charleston, SC 29403, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ballestrero A, Nencioni A, Boy D, Rocco I, Garuti A, Mela GS, Van Parijs L, Brossart P, Wesselborg S, Patrone F. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Cooperates with Anticancer Drugs to Overcome Chemoresistance in Antiapoptotic Bcl-2 Family Members Expressing Jurkat Cells. Clin Cancer Res 2004; 10:1463-70. [PMID: 14977850 DOI: 10.1158/1078-0432.ccr-1365-02] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Overexpression of antiapoptotic Bcl-2 family members has recently been related to resistance to chemo/radiotherapy in several human malignancies, particularly lymphomas. Hence, innovative approaches bypassing this resistance mechanism are required in the therapeutic approach. This study evaluated whether chemoresistance associated with Bcl-2 and Bcl-x(L) overexpression would be overcome by activating the death receptor pathway by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in the Jurkat cell model EXPERIMENTAL DESIGN We made use of genetically modified Jurkat cells to evaluate the effect of Bcl-2 or Bcl-x(L) overexpression on the cytotoxic effect produced by the anticancer drugs doxorubicin, etoposide, and oxaliplatin and TRAIL. Caspase activation was detected by cleavage of caspase-8 and -3. The mitochondrial transmambrane potential was assessed by staining with DiOC(6) and flow cytometry. Caspase activity was blocked by the broad-spectrum caspase inhibitor zVAD-fmk. RESULTS Bcl-2 and Bcl-x(L) overexpression but not lack of caspase-8 protects the Jurkat cells from the anticancer drug-induced cytolysis. However, Bcl-2/Bcl-x(L) Jurkat cells retained some susceptibility to TRAIL-induced cytolysis. A highly synergistic cytotoxic effect of the combination of TRAIL with any of the antiblastic used in this study was detected in the chemoresistant cells. This effect was associated with mitochondrial disassemblage and dependent on caspase activation CONCLUSIONS The combination of TRAIL with conventional anticancer drugs may prove to be useful in the treatment of antiapoptotic Bcl-2 family proteins-expressing malignancies.
Collapse
|
19
|
Odoux C, Albers A. Additive Effects of TRAIL and Paclitaxel on Cancer Cells: Implications for Advances in Cancer Therapy. VITAMINS AND HORMONES 2004; 67:385-407. [PMID: 15110187 DOI: 10.1016/s0083-6729(04)67020-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
In cancer therapy outgrowth of chemoresistant tumor cells is the most important factor that ultimately determines-apart from immediate adverse effects during treatment-the life span and prognosis of cancer patients. Despite many advances in cancer treatment and the integration of supportive medications, including new and better drugs for pain management, antiemesis, infection, and reconstitution of the hematopoietic system, both toxic effects and the development of resistance in response to the treatment remain a major problem. New treatment regimens have to be developed to target cancer more specifically using multiple cellular pathways. This will reduce toxic effects as well as the development of chemoresistance. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is the ligand for death receptors that belong to the TNF death receptor family. TRAIL triggers apoptosis in vitro in various cancer cell types. The antitumor drug, Paclitaxel (PA) was shown to increase the survival of patients with cancer. In in vitro experiments, PA also induces apoptosis in cancer cells. Together, PA and TRAIL lead to tumor regression in in vivo therapy and induce apoptosis through the interaction of TNF family death receptors, caspase activation, and?or cytochrome c release from mitochondria. PA and TRAIL complement each other using two distinct pathways that trigger apoptosis in addition to the anti-microtubule effect of PA. The combination of TRAIL and PA suppresses tumor growth that is otherwise resistant to treatment with either PA or TRAIL alone, by improving proapoptotic effects of the drugs. This observation support the use of the PA and TRAIL in future clinical trials.
Collapse
Affiliation(s)
- Christine Odoux
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pennsylvania, USA
| | | |
Collapse
|
20
|
Yang LQ, Fang DC, Wang RQ, Yang SM. Effect of NF-κB, survivin, Bcl-2 and Caspase3 on apoptosis of gastric cancer cells induced by tumor necrosis factor related apoptosis inducing ligand. World J Gastroenterol 2004; 10:22-5. [PMID: 14695762 PMCID: PMC4717071 DOI: 10.3748/wjg.v10.i1.22] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To study the effect of NF-κB, survivin, Bcl-2 and Caspase3 on tumor necrosis factors related apoptosis inducing ligand (TRAIL) induced apoptosis of gastric cancer cells.
METHODS: Gastric cancer cells of SGC-7901, MKN28, MKN45 and AGS lines were cultured in PRMI-1640 medium and the apoptosis rates of the cells of 4 lines were observed after treatment of tumor necrosis factors related apoptosis inducing ligand (TRAIL) with a flow cytometer. The expression of NF-κB, survivin, Bcl-2 and Caspase3 in gastric cancer cells of 4 lines was analyzed with Western blot.
RESULTS: After the gastric cancer cells were exposed to TRAIL 300 ng/mL for 24 hours, the apoptosis rate was 36.05%, 20.27%, 16.50% and 11.80% in MKN28, MKN45, AGS and SGC-7901cells respectively. Western blot revealed that the expressions of NF-κB and survivin were lower in MKN28 cells than in MKN45, AGS and SGC-7901 cells. In contrast, the expression of Caspase3 was higher in MKN28 cells than in MKN45, AGS and SGC-7901 cells.
CONCLUSION: There is a selectivity of TRAIL potency to induce apoptosis in gastric cancer cells of different cell lines. The anticancer potency of TRAIL is associated with the decreased expression of NF-κB and survivin and increased expression of Caspase3 of gastric cancer cells.
Collapse
Affiliation(s)
- Liu-Qin Yang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
21
|
Abstract
AIM: To investigate the apoptosis in gastric cancer cells induced by paclitaxel, and the relation between this apoptosis and expression of Bcl-2 and Bax.
METHODS: In in vitro experiments, MTT assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of gastric cancer cell line SGC-7901 before and after the paclitaxel treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2 and Bax.
RESULTS: Paclitaxel inhibited the growth of gastric cancer cell line SGC-7901 in a dose-and time-dependent manner. Paclitaxel induced SGC-7901 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. Paclitaxel could reduce the expression of apoptosis-regulated gene Bcl-2, and improve the expression of apoptosis-regulated gene Bax.
CONCLUSION: Paclitaxel is able to induce the apoptosis in gastric cancer. This apoptosis may be mediated by down-expression of apoptosis-regulated gene Bcl-2 and up-expression of apoptosis-regulated gene Bax.
Collapse
Affiliation(s)
- Hai-Bo Zhou
- Department Of Gastroenterology, Shandong Provincial Hospital, Jinan 250052, Shandong Province, China.
| | | |
Collapse
|
22
|
Abstract
AIM: To observe the localization of TRAIL/TRAIR (DR4, DR5, DcR1, DcR2) in the fetal pancreas.
METHODS: Fetal pancreas of 32 wk of pregnancy were obtained from induced abortions, embedded in paraffin, and 4-μm sections were prepared. The localization of TRAIL/TRAILR in fetal pancreas was investigated by fluorescence immunohistochemical method combined with laser scanning confocal microscopy.
RESULTS: TRAIL immunoreactive cells were mainly located on the periphery of the pancreas islets. There were a few DcR1 and DcR2 positive cells whereas there were no immunoreactive cells of DR4 and DR5 in the pancreas islets. In the acini and the ducts of the exocrine pancreas there were no TRAIL/TRAILR immunoreactive cells.
CONCLUSION: This study not only describes the distribution of TRAIL/TRAILR in the fetal pancreas, but also provides a morphological basis for deducing the function of TRAIL/TRAILR in pancreas, suggesting that in normal pancreatic islets, the pancreatic cells are resistant towards apoptosis too.
Collapse
Affiliation(s)
- Li-Hua Chen
- Department of Immunology, the Fourth Military Medical University, 17 West Changle Road, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|