1
|
Lee DD, Lal CV, Persad EA, Lowe CW, Schwarz AM, Awasthi N, Schwarz RE, Schwarz MA. Endothelial Monocyte-Activating Polypeptide II Mediates Macrophage Migration in the Development of Hyperoxia-Induced Lung Disease of Prematurity. Am J Respir Cell Mol Biol 2016; 55:602-612. [PMID: 27254784 DOI: 10.1165/rcmb.2016-0091oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myeloid cells are key factors in the progression of bronchopulmonary dysplasia (BPD) pathogenesis. Endothelial monocyte-activating polypeptide II (EMAP II) mediates myeloid cell trafficking. The origin and physiological mechanism by which EMAP II affects pathogenesis in BPD is unknown. The objective was to determine the functional consequences of elevated EMAP II levels in the pathogenesis of murine BPD and to investigate EMAP II neutralization as a therapeutic strategy. Three neonatal mouse models were used: (1) BPD (hyperoxia), (2) EMAP II delivery, and (3) BPD with neutralizing EMAP II antibody treatments. Chemokinic function of EMAP II and its neutralization were assessed by migration in vitro and in vivo. We determined the location of EMAP II by immunohistochemistry, pulmonary proinflammatory and chemotactic gene expression by quantitative polymerase chain reaction and immunoblotting, lung outcome by pulmonary function testing and histological analysis, and right ventricular hypertrophy by Fulton's Index. In BPD, EMAP II initially is a bronchial club-cell-specific protein-derived factor that later is expressed in galectin-3+ macrophages as BPD progresses. Continuous elevated expression corroborates with baboon and human BPD. Prolonged elevation of EMAP II levels recruits galectin-3+ macrophages, which is followed by an inflammatory state that resembles a severe BPD phenotype characterized by decreased pulmonary compliance, arrested alveolar development, and signs of pulmonary hypertension. In vivo pharmacological EMAP II inhibition suppressed proinflammatory genes Tnfa, Il6, and Il1b and chemotactic genes Ccl2 and Ccl9 and reversed the severe BPD phenotype. EMAP II is sufficient to induce macrophage recruitment, worsens BPD progression, and represents a targetable mechanism of BPD development.
Collapse
Affiliation(s)
| | - Charitharth V Lal
- 2 Department of Pediatrics, University of Alabama-Birmingham, Birmingham, Alabama.,3 Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; and
| | - Elizabeth A Persad
- 3 Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; and
| | | | - Anna M Schwarz
- 3 Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; and
| | | | - Roderich E Schwarz
- 4 Surgery, Indiana University, South Bend, Indiana.,5 IU Health Goshen Center for Cancer Care, Goshen, Indiana
| | | |
Collapse
|
2
|
Deng J, Zhao X, Rong L, Li X, Liu X, Qin Z. TNFR-1 on tumor cells contributes to the sensitivity of fibrosarcoma to chemotherapy. Protein Cell 2013; 4:393-401. [PMID: 23636687 DOI: 10.1007/s13238-013-3008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/19/2013] [Indexed: 12/21/2022] Open
Abstract
Impaired tumor necrosis factor receptor-1 (TNFR-1) signaling has been found in some malignant tumors with poor prognosis. However, the exact role of TNFR-1 signaling in fibrosarcoma remains unclear. Here, we explored the question by comparing the growth of TNFR-1 deficient (Tnfr1 (-)) and TNFR-1 competent (Tnfr1 (+)) fibrosarcoma FB61 cells (FB61-m and FB61-R1) in mice. TNFR-1 expression on fibrosarcoma cells delayed their growth in vivo but not in vitro. Moreover, reduced FB61-R1 tumor growth was also obtained in TNFR-1 knockout mice. The mechanism relies mainly on the TNFR-1-mediated downregulation of vascular endothelial growth factor (VEGF) production by tumor cells. Importantly, treatment of FB61-m tumors with melphalan resulted in a short delay of tumor growth, followed by a quick remission. However, when FB61-R1 tumors were treated with melphalan, tumor growth was similarly delayed at first and then completely rejected. Our results reveal evidence for TNFR-1 on tumor cells as a prerequisite in chemotherapy for fibrosarcoma, and provide novel insight into the therapeutic approach against some types of tumors using TNFR-1 angonist.
Collapse
Affiliation(s)
- Jingjing Deng
- Key Laboratory of Protein and Peptide Pharmaceuticals; Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
5
|
ten Hagen TLM, Seynhaeve ALB, Eggermont AMM. Tumor necrosis factor-mediated interactions between inflammatory response and tumor vascular bed. Immunol Rev 2009; 222:299-315. [PMID: 18364010 DOI: 10.1111/j.1600-065x.2008.00619.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Solid tumor therapy with chemotherapeutics greatly depends on the efficiency with which drugs are delivered to tumor cells. The typical characteristics of the tumor physiology promote but also appose accumulation of blood-borne agents. The leaky tumor vasculature allows easy passage of drugs. However, the disorganized vasculature causes heterogeneous blood flow, and together with the often-elevated interstitial fluid pressure, this state results in poor intratumoral drug levels and failure of treatment. Manipulation of the tumor vasculature could overcome these barriers and promote drug delivery. Targeting the vasculature has several advantages. The endothelial lining is readily accessible and the first to be encountered after systemic injection. Second, endothelial cells tend to be more stable than tumor cells and thus less likely to develop resistance to therapy. Third, targeting the tumor vasculature can have dual effects: (i) manipulation of the vasculature can enhance concomitant chemotherapy, and (ii) subsequent destruction of the vasculature can help to kill the tumor. In particular, tumor necrosis factor alpha is studied. Its action on solid tumors, both directly through tumor cell killing and destruction of the tumor vasculature and indirectly through manipulation of the tumor physiology, is complex. Understanding the mechanism of TNF and agents with comparable action on solid tumors is an important focus to further develop combination immunotherapy strategies.
Collapse
Affiliation(s)
- Timo L M ten Hagen
- Department of Surgical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
6
|
Lacreusette A, Lartigue A, Nguyen J, Barbieux I, Pandolfino M, Paris F, Khammari A, Dréno B, Jacques Y, Blanchard F, Godard A. Relationship between responsiveness of cancer cells to Oncostatin M and/or IL‐6 and survival of stage III melanoma patients treated with tumour‐infiltrating lymphocytes. J Pathol 2008; 216:451-9. [DOI: 10.1002/path.2416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- A Lacreusette
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Lartigue
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | | | - I Barbieux
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - M‐C Pandolfino
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
| | - F Paris
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - A Khammari
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - B Dréno
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Unit of Cell and Gene Therapy, CHU de Nantes, Nantes F‐44035, France
- Unit of Skin Cancer, CHU de Nantes, Nantes F‐44093, France
| | - Y Jacques
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
| | - F Blanchard
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- INSERM ERI7, Nantes F‐44035, France
| | - A Godard
- INSERM U892, Centre de Recherche en Cancérologie, Nantes F‐44035, France
- Université de Nantes, UFR Médecine, IFR26, Institut de Biologie, Nantes F‐44035, France
- Laboratoire de Biochimie, CHU de Nantes, Nantes F‐44093, France
| |
Collapse
|
7
|
Crippa L, Gasparri A, Sacchi A, Ferrero E, Curnis F, Corti A. Synergistic damage of tumor vessels with ultra low-dose endothelial-monocyte activating polypeptide-II and neovasculature-targeted tumor necrosis factor-alpha. Cancer Res 2008; 68:1154-61. [PMID: 18281491 DOI: 10.1158/0008-5472.can-07-2085] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-dose endothelial-monocyte activating polypeptide II (EMAP-II), a tumor-derived antiangiogenic cytokine, can sensitize tumor vasculature to the damaging activity of high-dose tumor necrosis factor (TNF)-alpha. However, this combination cannot be used for systemic treatment of patients because of prohibitive toxicity. We have found that this limitation can be overcome by combining a TNF-targeting strategy with the use of ultra low-dose EMAP-II. Coadministration of 0.1 ng of EMAP-II and 0.1 ng of CNGRCG-TNF (NGR-TNF), a peptide-TNF conjugate able to target tumor blood vessels, inhibited lymphoma and melanoma growth in mice, with no evidence of toxicity. This drug combination induced endothelial cell apoptosis in vivo and, at later time points, caused reduction of vessel density and massive apoptosis of tumor cells. Ligand-directed targeting of TNF was critical because the combination of nontargeted TNF with EMAP-II was inactive in these murine models. The synergism was progressively lost when the dose of EMAP-II was increased in the nanogram to microgram range, supporting the concept that the use of low-dose EMAP-II is critical. Studies on the mechanism of this paradoxical behavior showed that EMAP-II doses >1 ng induce the release of soluble TNF receptor 1 in circulation, a strong counter-regulatory inhibitor of TNF. Tumor vascular targeting with extremely low amounts of these cytokines may represent a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Luca Crippa
- Department of Oncology, Cancer Immunotherapy-Gene Therapy Program and IIT Network Research Unit of Molecular Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
8
|
van Horssen R, Rens JAP, Schipper D, Eggermont AMM, ten Hagen TLM. EMAP-II facilitates TNF-R1 apoptotic signalling in endothelial cells and induces TRADD mobilization. Apoptosis 2007; 11:2137-45. [PMID: 17051333 DOI: 10.1007/s10495-006-0284-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endothelial monocyte-activating polypeptide-II (EMAP-II), a proinflammatory cytokine with antiangiogenic properties, renders tumours sensitive to tumour necrosis factor-alpha (TNF) treatment. The exact mechanisms for this effect remain unclear. Here we show that human endothelial cells (EC) are insensitive to TNF-induced apoptosis but after a short pre-treatment with EMAP-II, EC quickly undergo TNF-induced apoptosis. We further analysed this EMAP-II pre-treatment effect and found no increase of TNF-R1 protein expression but rather an induction of TNF-R1 redistribution from Golgi storage pools to cell membranes. In addition, we observed EMAP-II induced mobilization and membrane expression of the TNF-R1-Associated Death Domain (TRADD) protein. Immunofluorescence co-staining experiments revealed that these two effects occurred at the same time in the same cell but TNF-R1 and TRADD were localized in different vesicles. These findings suggest that EMAP-II sensitises EC to apoptosis by facilitating TNF-R1 apoptotic signalling via TRADD mobilization and introduce a molecular and antiangiogenic explanation for the TNF sensitising properties of EMAP-II in tumours.
Collapse
Affiliation(s)
- Remco van Horssen
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, 3000 Daniel den Hoed Cancer Centre, Erasmus MC-Room Ee 0104, PO Box 1738, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
van Horssen R, Eggermont AMM, ten Hagen TLM. Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev 2006; 17:339-48. [PMID: 16945568 DOI: 10.1016/j.cytogfr.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endothelial monocyte-activating polypeptide-II (EMAP-II) is a pro-inflammatory cytokine with anti-angiogenic properties. Its precursor, proEMAP, is identical to the p43 auxiliary component of the tRNA multisynthetase complex and therefore involved in protein translation. Although most of the activities have been ascribed to the active form EMAP-II, also p43 has reported cytokine properties. ProEMAP/p43 and EMAP-II act on many levels and on many cell types including endothelial cells, immune cells and fibroblasts. In this review we summarize all available data on isolation, expression and functions of EMAP-II both in physiological processes as well as in pathological settings, like cancer. We also discuss the different reported mechanisms for processing of proEMAP/p43 into EMAP-II. Finally, we speculate on the possible applications of this cytokine for (cancer) therapy.
Collapse
Affiliation(s)
- Remco van Horssen
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus University MC - Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|