1
|
Y KN, Arjunan A, Maigandan D, Dharmarajan A, Perumalsamy LR. Advances and challenges in therapeutic resistant biomarkers of neuroblastoma: A comprehensive review. Biochim Biophys Acta Rev Cancer 2024; 1879:189222. [PMID: 39577750 DOI: 10.1016/j.bbcan.2024.189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Therapeutic resistance is one of the significant challenges in Neuroblastoma. Owing to its molecular diversity, the therapeutic resistance mechanisms of Neuroblastoma are highly complicated. The traditional chemo and radio therapeutics fail to provide adequate solutions to the treatment resistance, demanding in-depth research to improvise the existing prognostic and therapeutic regimens. To address this knowledge gap, several investigations are being employed, such as unravelling the molecular signalling mechanisms involved in drug resistance at genomics and proteomics levels, development of biomarkers for assessing the therapeutic success, development of novel drug targets for cancer stem cells, targeted immunotherapy and combination therapies. This review collates the ongoing research efforts to address the challenges faced in Neuroblastoma treatment resistance and uncovers the importance of transitioning biomarker discoveries into clinical practice.
Collapse
Affiliation(s)
- Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Amrutha Arjunan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Devi Maigandan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Arun Dharmarajan
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102 Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Human Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| |
Collapse
|
2
|
Chen H, Tang Y. Iron-loaded extracellular vesicles: angel or demon? Free Radic Res 2023; 57:61-68. [PMID: 36927327 DOI: 10.1080/10715762.2023.2191813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Extracellular vesicles (EVs) are identified as a non-classical way to mediate iron efflux except ferroportin. Interestingly, recent studies indicated that EVs pathway is a novel way involved in iron efflux. Mitochondria-derived vesicles (MDVs) are the potential mediator to load mitochondrial iron into EVs. Additionally, iron-replete cells resist excess iron-induced damage by secreting iron-loaded EVs, and the uptake of these EVs induces oxidative damage in the recipient cell. Importantly, iron-loaded EVs play a key role in aberrant iron distribution, which drives the progress of diseases like nonalcoholic fatty liver disease (NAFLD) and neurodegenerative diseases. Herein, we summarize extant research on intracellular iron export with an emphasis on EVs and put our eyes on the relationship between iron-loaded EVs with both parent and target cells. Iron-loaded EVs will be an important avenue for later research on their vital role in iron redistribution.
Collapse
Affiliation(s)
- Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell Death Dis 2022; 13:591. [PMID: 35803910 PMCID: PMC9270336 DOI: 10.1038/s41419-022-05044-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma patients have a poor prognosis mainly due to temozolomide (TMZ) resistance. NRF2 is an important transcript factor involved in chemotherapy resistance due to its protective role in the transcription of genes involved in cellular detoxification and prevention of cell death processes, such as ferroptosis. However, the relation between NRF2 and iron-dependent cell death in glioma is still poorly understood. Therefore, in this study, we analyzed the role of NRF2 in ferroptosis modulation in glioblastoma cells. Two human glioblastoma cell lines (U251MG and T98G) were examined after treatment with TMZ, ferroptosis inducers (Erastin, RSL3), and ferroptosis inhibitor (Ferrostatin-1). Our results demonstrated that T98G was more resistant to chemotherapy compared to U251MG and showed elevated levels of NRF2 expression. Interestingly, T98G revealed higher sensitivity to ferroptosis, and significant GSH depletion upon system xc- blockage. NRF2 silencing in T98G cells (T98G-shNRF2) significantly reduced the viability upon TMZ treatment. On the other hand, T98G-shNRF2 was resistant to ferroptosis and reverted intracellular GSH levels, indicating that NRF2 plays a key role in ferroptosis induction through GSH modulation. Moreover, silencing of ABCC1, a well-known NRF2 target that diminishes GSH levels, has demonstrated a similar collateral sensitivity. T98G-siABCC1 cells were more sensitive to TMZ and resistant to Erastin. Furthermore, we found that NRF2 positively correlates with ABCC1 expression in tumor tissues of glioma patients, which can be associated with tumor aggressiveness, drug resistance, and poor overall survival. Altogether, our data indicate that high levels of NRF2 result in collateral sensitivity on glioblastoma via the expression of its pro-ferroptotic target ABCC1, which contributes to GSH depletion when the system xc- is blocked by Erastin. Thus, ferroptosis induction could be an important therapeutic strategy to reverse drug resistance in gliomas with high NRF2 and ABCC1 expression.
Collapse
|
4
|
Morales DE, Mousa SA. Intranasal Delivery in Glioblastoma treatment: Prospective Molecular Treatment Modalities. Heliyon 2022; 8:e09517. [PMID: 35647354 PMCID: PMC9136349 DOI: 10.1016/j.heliyon.2022.e09517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is rare and fatal glioma with limited treatment options. Treatments provide minimal improvement in prognosis and only 6.8% of GBM patients have a life expectancy greater than five years. Surgical resection of this malignant glioma is difficult due to its highly invasive nature and follow-up radiotherapy with concomitant temozolomide, the currently approved standard of care, and will only extend the life of patients by a few months. It has been nearly two decades since the approval of temozolomide and there have been no clinically relevant major breakthroughs since, painting a dismal picture for patients with GBM. Although the future of GBM management seems bleak, there are many new treatment options on the horizon that propose methods of delivery to circumvent current limitations in the standard of care, i.e., the blood brain barrier and treatment resistance mechanisms. The nose is a highly accessible non-invasive route of delivery that has been incorporated into many investigational studies within the past five years and potentially paves the path to a brighter future for the management of GBM. Intranasal administration has its limitations however, as drugs can be degraded and/or fail to reach the site of action. This has prompted many studies for implementation of nanoparticle systems to overcome these limitations and to accurately deliver drugs to the site of action. This review highlights the advances in intranasal therapy delivery and impact of nanotechnology in the management of GBM and discusses potential treatment modalities that show promise for further investigation.
Collapse
|
5
|
Petre G, Durand H, Pelletier L, Poulenard M, Nugue G, Ray PF, Rendu J, Coutton C, Berger F, Bidart M. Rapid Proteomic Profiling by MALDI-TOF Mass Spectrometry for Better Brain Tumor Classification. Proteomics Clin Appl 2020; 14:e1900116. [PMID: 32198817 DOI: 10.1002/prca.201900116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/21/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Glioblastoma is one of the most aggressive primary brain cancers. The precise grading of tumors is important to adopt the best follow-up treatment but complementary methods to histopathological diagnosis still lack in achieving an unbiased and reliable classification. EXPERIMENTAL DESIGN To progress in the field, a rapid Matrix Assisted Laser Desorption Ionization - Time of Flight Mass spectrometry (MALDI-TOF MS) protocole, devised for the identification and taxonomic classification of microorganisms and based on the analysis of whole cell extracts, was applied to glioma cell lines. RESULTS The analysis of different human glioblastoma cell lines permitted to identify distinct proteomic profiles thus demonstrating the ability of MALDI-TOF to distinguish different malignant cell types. CONCLUSIONS AND CLINICAL RELEVANCE In the study, the authors showed the ability of MALDI-TOF profiling to discriminate glioblastoma cell lines, demonstrating that this technique could be used in complement to histological tumor classification. The proposed procedure is rapid and inexpensive and could be used to improve brain tumors classification and help propose a personalized and more efficient treatment.
Collapse
Affiliation(s)
- Graciane Petre
- UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Harmonie Durand
- UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Laurent Pelletier
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Margot Poulenard
- UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Guillaume Nugue
- UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, 38000, France.,Unité Médicale de génétique de l'infertilité et DPI moléculaire (GI-DPI), Pôle Biologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, 38700, France
| | - John Rendu
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,Unité Médicale de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Pôle Biologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, 38700, France
| | - Charles Coutton
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, 38000, France.,Unité Médicale de Génétique Chromosomique, Hopital Couple Enfant, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, 38700, France
| | - Francois Berger
- UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France
| | - Marie Bidart
- UMR1205, Brain Tech Lab, Grenoble Alpes University, Grenoble, 38000, France.,Unité Médicale de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Pôle Biologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, 38700, France
| |
Collapse
|
6
|
Lee SY, Walter V, Zhu J, Salzberg AC, Liu DJ, Connor JR. Impact of HFE variants and sex in lung cancer. PLoS One 2019; 14:e0226821. [PMID: 31856248 PMCID: PMC6922424 DOI: 10.1371/journal.pone.0226821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022] Open
Abstract
The homeostatic iron regulator protein HFE is involved in regulation of iron acquisition for cells. The prevalence of two common HFE gene variants (H63D, C282Y) has been studied in many cancer types; however, the impact of HFE variants, sex and HFE gene expression in lung cancer has not been studied. We determined the prevalence of HFE variants and their impact on cancer phenotypes in lung cancer cell lines, in lung cancer patient specimens, and using The Cancer Genome Atlas (TCGA) database. We found that seven out of ten human lung cancer cell lines carry the H63D or C282Y HFE variant. Analysis of lung cancer specimens from our institute (Penn State Hershey Medical Center) revealed a sex and genotype interaction risk for metastasis in lung adenocarcinoma (LUAD) patients; H63D HFE is associated with less metastasis in males compared to wild type (WT) HFE; however, females with the H63D HFE variant tend to develop more metastatic tumors than WT female patients. In the TCGA LUAD dataset, the H63D HFE variant was associated with poorer survival in females compared to females with WT HFE. The frequency of C282Y HFE is higher in female lung squamous cell carcinoma (LUSC) patients of TCGA than males, however the C282Y HFE variant did not impact the survival of LUSC patients. In the TCGA LUSC dataset, C282Y HFE patients (especially females) had poorer survival than WT HFE patients. HFE expression level was not affected by HFE genotype status and did not impact patient's survival, regardless of sex. In summary, these data suggest that there is a sexually dimorphic effect of HFE polymorphisms in the survival and metastatic disease in lung cancer.
Collapse
Affiliation(s)
- Sang Y. Lee
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail: ,
| | - Vonn Walter
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Anna C. Salzberg
- Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Dajiang J. Liu
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - James R. Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
7
|
Kazan HH, Urfali-Mamatoglu C, Gunduz U. Iron metabolism and drug resistance in cancer. Biometals 2017; 30:629-641. [DOI: 10.1007/s10534-017-0037-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023]
|
8
|
Mrowczynski OD, Madhankumar AB, Slagle-Webb B, Lee SY, Zacharia BE, Connor JR. HFE genotype affects exosome phenotype in cancer. Biochim Biophys Acta Gen Subj 2017; 1861:1921-1928. [PMID: 28527894 DOI: 10.1016/j.bbagen.2017.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Neuroblastoma is the third most common childhood cancer, and timely diagnosis and sensitive therapeutic monitoring remain major challenges. Tumor progression and recurrence is common with little understanding of mechanisms. A major recent focus in cancer biology is the impact of exosomes on metastatic behavior and the tumor microenvironment. Exosomes have been demonstrated to contribute to the oncogenic effect on the surrounding tumor environment and also mediate resistance to therapy. The effect of genotype on exosomal phenotype has not yet been explored. We interrogated exosomes from human neuroblastoma cells that express wild-type or mutant forms of the HFE gene. HFE, one of the most common autosomal recessive polymorphisms in the Caucasian population, originally associated with hemochromatosis, has also been associated with increased tumor burden, therapeutic resistance boost, and negative impact on patient survival. Herein, we demonstrate that changes in genotype cause major differences in the molecular and functional properties of exosomes; specifically, HFE mutant derived exosomes have increased expression of proteins relating to invasion, angiogenesis, and cancer therapeutic resistance. HFE mutant derived exosomes were also shown to transfer this cargo to recipient cells and cause an increased oncogenic functionality in those recipient cells.
Collapse
Affiliation(s)
- Oliver D Mrowczynski
- Department of Neurosurgery, Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - A B Madhankumar
- Department of Neurosurgery, Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Becky Slagle-Webb
- Department of Neurosurgery, Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Sang Y Lee
- Department of Neurosurgery, Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
9
|
Lee SY, Zhu J, Salzberg AC, Zhang B, Liu DJ, Muscat JE, Langan ST, Connor JR. Analysis of single nucleotide variants of HFE gene and association to survival in The Cancer Genome Atlas GBM data. PLoS One 2017; 12:e0174778. [PMID: 28358914 PMCID: PMC5373638 DOI: 10.1371/journal.pone.0174778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
Human hemochromatosis protein (HFE) is involved in iron metabolism. Two major HFE polymorphisms, H63D and C282Y, have been associated with an increased risk of cancers. Previously, we reported decreased gender effects in overall survival based on H63D or C282Y HFE polymorphisms patients with glioblastoma multiforme (GBM). However, the effect of other single nucleotide variation (SNV) in the HFE gene on the cancer development and progression has not been systematically studied. To expand our finding in a larger sample, and to identify other HFE SNV, we analyzed the frequency of somatic SNV in HFE gene and its relationship to survival in GBM patients using The Cancer Genome Atlas (TCGA) GBM (Caucasian only) database. We found 9 SNVs with increased frequency in blood normal of TCGA GBM patients compared to the 1000Genome. Among 9 SNVs, 7 SNVs were located in the intron and 2 SNVs (i.e., H63D, C282Y) in the exon of HFE gene. The statistical analysis demonstrated that blood normal samples of TCGA GBM have more H63D (p = 0.0002, 95% Confidence interval (CI): 0.2119–0.3223) or C282Y (p = 0.0129, 95% CI: 0.0474–0.1159) HFE polymorphisms than 1000Genome. The Kaplan-Meier survival curve for the 264 GBM samples revealed no difference between wild type (WT) HFE and H63D, and WT HFE and C282Y GBM patients. In addition, there was no difference in the survival of male/female GBM patients based on HFE genotype. There was no correlation between HFE expression and survival. In conclusion, the current results suggest that somatic HFE polymorphisms do not impact GBM patients’ survival in the TCGA data set of GBM.
Collapse
Affiliation(s)
- Sang Y. Lee
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Junjia Zhu
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Anna C. Salzberg
- Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Bo Zhang
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Dajiang J. Liu
- Department of Public Health Sciences and Biochemistry & Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Joshua E. Muscat
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Sara T. Langan
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - James R. Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
10
|
HFE Variants and the Expression of Iron-Related Proteins in Breast Cancer-Associated Lymphocytes and Macrophages. CANCER MICROENVIRONMENT 2016; 9:85-91. [PMID: 28028679 DOI: 10.1007/s12307-016-0191-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
The association of HFE (High Iron FE) major variants with breast cancer risk and behavior has been a matter of discussion for a long time. However, their impact on the expression of iron-related proteins in the breast cancer tissue has never been addressed. In the present study, hepcidin, ferroportin 1, transferrin receptor 1 (TfR1), and ferritin expressions, as well as tissue iron deposition were evaluated in a collection of samples from breast cancers patients and analyzed according to the patients' HFE genotype. Within the group of patients with invasive carcinoma, those carrying the p.Cys282Tyr variant in heterozygosity presented a higher expression of hepcidin in lymphocytes and macrophages than wild-type or p.His63Asp carriers. An increased expression of TfR1 was also observed in all the cell types analyzed but only in p.Cys282Tyr/p.His63Asp compound heterozygous patients. A differential impact of the two HFE variants was further noticed with the observation of a significantly higher percentage of p.Cys282Tyr heterozygous patients presenting tissue iron deposition in comparison to p.His63Asp heterozygous. In the present cohort, no significant associations were found between HFE variants and classical clinicopathological markers of breast cancer behavior and prognosis. Although limited by a low sampling size, our results provide a new possible explanation for the previously reported impact of HFE major variants on breast cancer progression, i.e., not by influencing systemic iron homeostasis but rather by differentially modulating the local cellular expression of iron-related proteins and tissue iron deposition.
Collapse
|
11
|
Weston C, Klobusicky J, Weston J, Connor J, Toms SA, Marko NF. Aberrations in the Iron Regulatory Gene Signature Are Associated with Decreased Survival in Diffuse Infiltrating Gliomas. PLoS One 2016; 11:e0166593. [PMID: 27898674 PMCID: PMC5127508 DOI: 10.1371/journal.pone.0166593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/01/2016] [Indexed: 01/02/2023] Open
Abstract
Iron is a tightly regulated micronutrient with no physiologic means of elimination and is necessary for cell division in normal tissue. Recent evidence suggests that dysregulation of iron regulatory proteins may play a role in cancer pathophysiology. We use public data from The Cancer Genome Atlas (TCGA) to study the association between survival and expression levels of 61 genes coding for iron regulatory proteins in patients with World Health Organization Grade II-III gliomas. Using a feature selection algorithm we identified a novel, optimized subset of eight iron regulatory genes (STEAP3, HFE, TMPRSS6, SFXN1, TFRC, UROS, SLC11A2, and STEAP4) whose differential expression defines two phenotypic groups with median survival differences of 52.3 months for patients with grade II gliomas (25.9 vs. 78.2 months, p< 10−3), 43.5 months for patients with grade III gliomas (43.9 vs. 87.4 months, p = 0.025), and 54.0 months when considering both grade II and III gliomas (79.9 vs. 25.9 months, p < 10−5).
Collapse
Affiliation(s)
- Cody Weston
- College of Medicine. Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Joe Klobusicky
- Department of Data Science. Geisinger Medical Center, Danville, Pennsylvania, United States of America
| | - Jennifer Weston
- Department of Public Health Sciences. Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - James Connor
- College of Medicine. Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Steven A. Toms
- Department of Neurosurgery. Geisinger Medical Center, Danville, Pennsylvania, United States of America
| | - Nicholas F. Marko
- Department of Neurosurgery. Geisinger Medical Center, Danville, Pennsylvania, United States of America
- Department of Surgery. Pennsylvania State School of Medicine, Danville, Pennsylvania, United States of America
| |
Collapse
|
12
|
Abstract
Temozolomide (TMZ) is an oral alkylating agent used to treat glioblastoma multiforme (GBM) and astrocytomas. However, at least 50% of TMZ treated patients do not respond to TMZ. This is due primarily to the over-expression of O6-methylguanine methyltransferase (MGMT) and/or lack of a DNA repair pathway in GBM cells. Multiple GBM cell lines are known to contain TMZ resistant cells and several acquired TMZ resistant GBM cell lines have been developed for use in experiments designed to define the mechanism of TMZ resistance and the testing of potential therapeutics. However, the characteristics of intrinsic and adaptive TMZ resistant GBM cells have not been systemically compared. This article reviews the characteristics and mechanisms of TMZ resistance in natural and adapted TMZ resistant GBM cell lines. It also summarizes potential treatment options for TMZ resistant GBMs.
Collapse
Key Words
- AGT (also known as MGMT), O6-methylguanine-DNA alkyltransferase
- AP-1, activator protein 1
- APE1, apurinic/apyrimidine endonuclease/redox factor-1
- APNG, Alkylpurine-DNA-N-glycosylase
- Adaptive
- BBB, blood-brain-barrier
- BCRP1, breast cancer resistance protein 1
- BER, base excision repair
- BG, benzylguanine
- C8orf4, Chromosome 8 open reading frame 4
- EGFR, epidermal growth factor receptor
- ERK1/2, Extracellular Signal Regulated Kinases 1 and 2
- FDA, Food and Drug Administration
- GBM, glioblastoma multiforme or glioblastoma
- Glioblastoma
- HDAC, histone deacetylase
- IFN-β, Interferon-β
- Intrinsic
- JNK, Jun N-terminal kinase
- KDM, Histone lysine demethylase
- LC50, 50% cell death concentration
- LIF, Leukemia inhibitory factor
- MGMT, O6-methylguanine methyltransferase
- MMR, DNA mismatch repair
- MSH6, mutS homolog 6
- MTIC, 5-(3-methyltriazen-1-yl) imidazole-4-carboxamide
- NAMPT, nicotinamide phosphoribosyl transferase
- NF-κB, nuclear factor-Kappa B
- NHA, normal human astrocytes
- PARP, poly ADP ribose polymerase
- Resistance
- SAHA, N-hydroxy-N′-phenyl-octanediamide
- STAT3, Signal Transducer and Activator of Transcription 3
- TMZ, Temozolomide
- TNFAIP3, Tumor necrosis factor-α-induced protein 3
- Temodar
- Temozolomide
- VPA, Valproic acid
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Sang Y Lee
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
13
|
Lee SY, Slagle-Webb B, Sheehan JM, Zhu J, Muscat JE, Glantz M, Connor JR. HFE polymorphisms affect survival of brain tumor patients. J Neurooncol 2014; 122:97-104. [PMID: 25491948 DOI: 10.1007/s11060-014-1681-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/02/2014] [Indexed: 01/15/2023]
Abstract
The HFE (high iron) protein plays a key role in the regulation of body iron. HFE polymorphisms (H63D and C282Y) are the common genetic variants in Caucasians. Based on frequency data, both HFE polymorphisms have been associated with increased risk in a number of cancers. The prevalence of the two major HFE polymorphisms in a human brain tumor patient populations and the impact of HFE polymorphisms on survival have not been studied. In the present study, there is no overall difference in survival by HFE genotype. However, male GBM patients with H63D HFE (H63D) have poorer overall survival than wild type HFE (WT) male GBM (p = 0.03). In GBM patients with the C282Y HFE polymorphism (C282Y), female patients have poorer survival than male patients (p = 0.05). In addition, female metastatic brain tumor patients with C282Y have shorter survival times post diagnosis than WT patients (p = 0.02) or male metastatic brain tumor patients with C282Y (p = 0.02). There is a tendency toward a lower proportion of H63D genotype in GBM patients than a non-tumor control group (p = 0.09) or other subtypes of brain tumors. In conclusion, our study suggests that HFE genotype impacts survival of brain tumor patients in a gender specific manner. We previously reported that glioma and neuroblastoma cell lines with HFE polymorphisms show greater resistance to chemo and radiotherapy. Taken together, these data suggest HFE genotype is an important consideration for evaluating and planning therapeutic strategies in brain tumor patients.
Collapse
Affiliation(s)
- Sang Y Lee
- Department of Neurosurgery, H110, The Pennsylvania State University College of Medicine, Penn State Hershey Medical Center, Penn State Hershey Cancer Institute, 500 University Drive (H110), Hershey, PA, 17033-0850, USA,
| | | | | | | | | | | | | |
Collapse
|
14
|
Weston C, Connor J. Evidence for the Influence of the Iron Regulatory MHC Class I Molecule HFE on Tumor Progression in Experimental Models and Clinical Populations. TRANSLATIONAL ONCOGENOMICS 2014; 6:1-12. [PMID: 25520556 PMCID: PMC4259395 DOI: 10.4137/tog.s19064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023]
Abstract
Proteins involved in iron regulation are modifiers of cancer risk and progression. Of these, the HFE protein (high iron gene and its protein product) is of particular interest because of its interaction with both iron handling and immune function and the high rate of genetic polymorphisms resulting in a mutant protein. Clinical studies suggest that HFE polymorphisms increase the risk of certain cancers, but the inconsistent outcomes suggest a more nuanced effect, possibly interacting with other genetic or environmental factors. Some basic science research has been conducted to begin to understand the implications of variant HFE genotype on cancer, but the story is far from complete. In particular, putative mechanisms exist for HFE to affect tumor progression through its role in iron handling and its major histocompatibility complex class I structural features. In this review, the current understanding of the role of HFE in cancer is described and models for future directions are identified.
Collapse
Affiliation(s)
- Cody Weston
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
15
|
Characterization of a novel anti-cancer compound for astrocytomas. PLoS One 2014; 9:e108166. [PMID: 25255031 PMCID: PMC4177861 DOI: 10.1371/journal.pone.0108166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
The standard chemotherapy for brain tumors is temozolomide (TMZ), however, as many as 50% of brain tumors are reportedly TMZ resistant leaving patients without a chemotherapeutic option. We performed serial screening of TMZ resistant astrocytoma cell lines, and identified compounds that are cytotoxic to these cells. The most cytotoxic compound was an analog of thiobarbituric acid that we refer to as CC-I. There is a dose-dependent cytotoxic effect of CC-I in TMZ resistant astrocytoma cells. Cell death appears to occur via apoptosis. Following CC-I exposure, there was an increase in astrocytoma cells in the S and G2/M phases. In in vivo athymic (nu/nu) nude mice subcutaneous and intracranial tumor models, CC-I completely inhibited tumor growth without liver or kidney toxicity. Molecular modeling and enzyme activity assays indicate that CC-I selectively inhibits topoisomerase IIα similar to other drugs in its class, but its cytotoxic effects on astrocytoma cells are stronger than these compounds. The cytotoxic effect of CC-I is stronger in cells expressing unmethylated O6-methylguanine methyltransferase (MGMT) but is still toxic to cells with methylated MGMT. CC-I can also enhance the toxic effect of TMZ on astrocytoma when the two compounds are combined. In conclusion, we have identified a compound that is effective against astrocytomas including TMZ resistant astrocytomas in both cell culture and in vivo brain tumor models. The enhanced cytotoxicity of CC-I and the safety profile of this family of drugs could provide an interesting tool for broader evaluation against brain tumors.
Collapse
|
16
|
Ali-Rahmani F, Huang MA, Schengrund CL, Connor JR, Lee SY. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells. PLoS One 2014; 9:e88724. [PMID: 24533143 PMCID: PMC3922969 DOI: 10.1371/journal.pone.0088724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/10/2014] [Indexed: 11/26/2022] Open
Abstract
Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Michael A Huang
- Division of Pediatric Hematology/Oncology, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - C-L Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Sang Y Lee
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Penn State Hershey Cancer Institute, Penn State M.S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
17
|
Pacurari M, Addison JB, Bondalapati N, Wan YW, Luo D, Qian Y, Castranova V, Ivanov AV, Guo NL. The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells. Int J Oncol 2013; 43:548-60. [PMID: 23708087 PMCID: PMC3775564 DOI: 10.3892/ijo.2013.1963] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA‑200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis. Nevertheless, miR-200 family target genes that promote metastasis in non-small cell lung cancer (NSCLC) remain largely unknown. Here, we sought to investigate whether the microRNA-200 family regulates our previously identified NSCLC prognostic marker genes associated with metastasis, as potential molecular targets. Novel miRNA targets were predicted using bioinformatics tools based on correlation analyses of miRNA and mRNA expression in 57 squamous cell lung cancer tumor samples. The predicted target genes were validated with quantitative RT-PCR assays and western blot analysis following re-expression of miR-200a, -200b and -200c in the metastatic NSCLC H1299 cell line. The results show that restoring miR-200a or miR-200c in H1299 cells induces downregulation of DLC1, ATRX and HFE. Reinforced miR-200b expression results in downregulation of DLC1, HNRNPA3 and HFE. Additionally, miR-200 family downregulates HNRNPR3, HFE and ATRX in BEAS-2B immortalized lung epithelial cells in quantitative RT-PCR and western blot assays. The miR-200 family and these potential targets are functionally involved in canonical pathways of immune response, molecular mechanisms of cancer, metastasis signaling, cell-cell communication, proliferation and DNA repair in Ingenuity pathway analysis (IPA). These results indicate that re-expression of miR-200 downregulates our previously identified NSCLC prognostic biomarkers in metastatic NSCLC cells. These results provide new insights into miR-200 regulation in lung cancer metastasis and consequent clinical outcome, and may provide a potential basis for innovative therapeutic approaches for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Maricica Pacurari
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carter CJ. The Fox and the Rabbits-Environmental Variables and Population Genetics (1) Replication Problems in Association Studies and the Untapped Power of GWAS (2) Vitamin A Deficiency, Herpes Simplex Reactivation and Other Causes of Alzheimer's Disease. ISRN NEUROLOGY 2011; 2011:394678. [PMID: 22389816 PMCID: PMC3263564 DOI: 10.5402/2011/394678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
Classical population genetics shows that varying permutations of genes and risk factors permit or disallow the effects of causative agents, depending on circumstance. For example, genes and environment determine whether a fox kills black or white rabbits on snow or black ash covered islands. Risk promoting effects are different on each island, but obscured by meta-analysis or GWAS data from both islands, unless partitioned by different contributory factors. In Alzheimer's disease, the foxes appear to be herpes, borrelia or chlamydial infection, hypercholesterolemia, hyperhomocysteinaemia, diabetes, cerebral hypoperfusion, oestrogen depletion, or vitamin A deficiency, all of which promote beta-amyloid deposition in animal models—without the aid of gene variants. All relate to risk factors and subsets of susceptibility genes, which condition their effects. All are less prevalent in convents, where nuns appear less susceptible to the ravages of ageing. Antagonism of the antimicrobial properties of beta-amyloid by Abeta autoantibodies in the ageing population, likely generated by antibodies raised to beta-amyloid/pathogen protein homologues, may play a role in this scenario. These agents are treatable by diet and drugs, vitamin supplementation, pathogen detection and elimination, and autoantibody removal, although again, the beneficial effects of individual treatments may be tempered by genes and environment.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 4, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 0LG, UK
| |
Collapse
|
19
|
Ali-Rahmani F, Hengst JA, Connor JR, Schengrund CL. Effect of HFE variants on sphingolipid expression by SH-SY5Y human neuroblastoma cells. Neurochem Res 2011; 36:1687-96. [PMID: 21243428 DOI: 10.1007/s11064-011-0403-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 02/08/2023]
Abstract
C282Y and H63D are two common variants of the hemochromatosis protein HFE. SH-SY5Y human neuroblastoma cells stably transfected to express either wild type HFE (WT-HFE), or the C282Y or H63D allele were analyzed for effect of expression of the mutant proteins on transcription of 14 enzymes involved in sphingolipid metabolism. Cells expressing the C282Y variant showed significant increases (>2-fold) in transcription of five genes and decreases in two compared to that seen for cells expressing WT-HFE, while cells expressing the H63D variant showed an elevation in transcription of one gene and a decrease in two. These changes were seen as alterations in ganglioside composition, cell surface binding by the binding subunit of cholera toxin, expression of sphingosine-kinase-1 and synthesis of sphingosine-1-phosphate. These changes may explain why C282Y-HFE is a risk factor for colon and breast cancer and possibly protective against Alzheimer's disease while H63D-HFE is a risk factor for neurodegenerative diseases.
Collapse
Affiliation(s)
- F Ali-Rahmani
- Department of Biochemistry and Molecular Biology H171, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | | | |
Collapse
|