1
|
Paul R, Shreya S, Pandey S, Shriya S, Abou Hammoud A, Grosset CF, Prakash Jain B. Functions and Therapeutic Use of Heat Shock Proteins in Hepatocellular Carcinoma. LIVERS 2024; 4:142-163. [DOI: 10.3390/livers4010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Heat shock proteins are intracellular proteins expressed in prokaryotes and eukaryotes that help protect the cell from stress. They play an important role in regulating cell cycle and cell death, work as molecular chaperons during the folding of newly synthesized proteins, and also in the degradation of misfolded proteins. They are not only produced under stress conditions like acidosis, energy depletion, and oxidative stress but are also continuously synthesized as a result of their housekeeping functions. There are different heat shock protein families based on their molecular weight, like HSP70, HSP90, HSP60, HSP27, HSP40, etc. Heat shock proteins are involved in many cancers, particularly hepatocellular carcinoma, the main primary tumor of the liver in adults. Their deregulations in hepatocellular carcinoma are associated with metastasis, angiogenesis, cell invasion, and cell proliferation and upregulated heat shock proteins can be used as either diagnostic or prognostic markers. Targeting heat shock proteins is a relevant strategy for the treatment of patients with liver cancer. In this review, we provide insights into heat shock proteins and heat shock protein-like proteins (clusterin) in the progression of hepatocellular carcinoma and their use as therapeutic targets.
Collapse
Affiliation(s)
- Ramakrushna Paul
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Smriti Shreya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | | | - Srishti Shriya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Aya Abou Hammoud
- MIRCADE Team, U1312, Bordeaux Institute of Oncology, BRIC, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Christophe F. Grosset
- MIRCADE Team, U1312, Bordeaux Institute of Oncology, BRIC, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| |
Collapse
|
2
|
Rizvi SF, Hasan A, Parveen S, Mir SS. Untangling the complexity of heat shock protein 27 in cancer and metastasis. Arch Biochem Biophys 2023; 736:109537. [PMID: 36738981 DOI: 10.1016/j.abb.2023.109537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.
Collapse
Affiliation(s)
- Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
3
|
Long S, Peng F, Song B, Wang L, Chen J, Shang B. Heat Shock Protein Beta 1 is a Prognostic Biomarker and Correlated with Immune Infiltrates in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:5483-5492. [PMID: 34531676 PMCID: PMC8439715 DOI: 10.2147/ijgm.s330608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most serious malignancies. The main features of HCC are vascular invasion and drug resistance. Ferroptosis is a novel cell program that is involved in several diseases, such as cancer. Heat shock protein beta 1 (HSPB1) is a major component of heat shock proteins. A recent study showed that HSPB1 could be a new therapeutic target for colorectal cancer with 5-fluorouracil-acquired resistance. However, the functional role of HSPB1 in HCC remains unclear. Aim The aim of this study is to clarify HSPB1 expression in HCC and its potential therapeutic and prognostic value. Methods We collected data on HSPB1 expression levels in HCC and normal liver tissues from The Cancer Genome Atlas and Gene Expression Omnibus databases. We then validated it using immunohistochemistry (IHC). Receiver operating characteristic and Kaplan–Meier survival curves were used to investigate the role of HSPB1 in the prognosis analysis of HCC. Further, we used the online Search Tool for the Retrieval of Interacting Genes/Proteins website, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes to conduct enrichment analysis and identify the predictive signaling pathways. Meanwhile, we used the TIMER and GSVA package of R (v3.6.3) to analyze the association between HSPB1 and immunocyte infiltration. Results Compared to normal tissues, there was differential expression of HSPB1 in pan-cancers. HSPB1 expression was higher in HCC tissues than in normal tissues (p<0.05). There was an evident significant difference between HSPB1 mRNA levels and histologic grade, vascular invasion, and alpha-fetoprotein level (all p values<0.05). Univariate analysis indicated that HCC patients with high HSPB1 levels had shorter overall survival rates than those with low HSPB1 levels (p<0.05). MAPK14, HSPA8, MAPKAPK3, MAPKAPK5, and MAPKAPK2 are essential proteins that interact with HSPB1. There was a significant correlation between HSPB1 expression levels and immune cell infiltration, including CD4+ T cells (r=0.203, p<0.05). Conclusion High HSPB1 expression is closely associated with a worse prognosis in HCC patients, and HSPB1 may be a target of immunotherapy in HCC.
Collapse
Affiliation(s)
- Shengyi Long
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Fang Peng
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Baohui Song
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Jun Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Bingbing Shang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
Hsa_circ_0072309 inhibits proliferation and invasion of glioblastoma. Pathol Res Pract 2021; 222:153433. [PMID: 33862563 DOI: 10.1016/j.prp.2021.153433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
Increasing literature reported that circRNAs play vital roles in the occurrence and progression of GBM and regulate GBM cell proliferation, metastases, and chemosensitivity. However, the expression pattern and function of circRNAs in GBM still need further studies. In our work, hsa_circ_0072309 was remarkably downregulated in GBM. Hsa_circ_0072309 inhibits proliferation and invasion of glioblastoma and affects cytoskeletal of GBM cells. Moreover, we found that the function of hsa_circ_0,072,309 in GBM was associated with HSP27, which was reported to be an important regulator of cell proliferation, invasion and cytoskeletal. Our study provides a novel view of hsa_circ_0072309 in GBM cell proliferation and invasion, indicating that hsa_circ_0072309 may act as a potential therapeutic target for GBM comprehensive treatment.
Collapse
|
5
|
Lallier M, Marchandet L, Moukengue B, Charrier C, Baud’huin M, Verrecchia F, Ory B, Lamoureux F. Molecular Chaperones in Osteosarcoma: Diagnosis and Therapeutic Issues. Cells 2021; 10:cells10040754. [PMID: 33808130 PMCID: PMC8067202 DOI: 10.3390/cells10040754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary bone tumor affecting mainly children and young adults. Despite therapeutic progress, the 5-year survival rate is 70%, but it drops drastically to 30% for poor responders to therapies or for patients with metastases. Identifying new therapeutic targets is thus essential. Heat Shock Proteins (HSPs) are the main effectors of Heat Shock Response (HSR), the expression of which is induced by stressors. HSPs are a large family of proteins involved in the folding and maturation of other proteins in order to maintain proteostasis. HSP overexpression is observed in many cancers, including breast, prostate, colorectal, lung, and ovarian, as well as OS. In this article we reviewed the significant role played by HSPs in molecular mechanisms leading to OS development and progression. HSPs are directly involved in OS cell proliferation, apoptosis inhibition, migration, and drug resistance. We focused on HSP27, HSP60, HSP70 and HSP90 and summarized their potential clinical uses in OS as either biomarkers for diagnosis or therapeutic targets. Finally, based on different types of cancer, we consider the advantage of targeting heat shock factor 1 (HSF1), the major transcriptional regulator of HSPs in OS.
Collapse
Affiliation(s)
- Morgane Lallier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Louise Marchandet
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Brice Moukengue
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Celine Charrier
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Marc Baud’huin
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- CHU Nantes, 44035 Nantes, France
| | - Franck Verrecchia
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - Benjamin Ory
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
| | - François Lamoureux
- UMR1238, Phy-OS, Sarcomes Osseux et Remodelage des Tissus Calcifiés, INSERM, Université de Nantes, 44035 Nantes, France; (M.L.); (L.M.); (B.M.); (C.C.); (M.B.); (F.V.); (B.O.)
- Correspondence:
| |
Collapse
|
6
|
The essential role of PRAK in tumor metastasis and its therapeutic potential. Nat Commun 2021; 12:1736. [PMID: 33741957 PMCID: PMC7979731 DOI: 10.1038/s41467-021-21993-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/20/2021] [Indexed: 01/29/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death. Despite the recent advancements in cancer treatment, there is currently no approved therapy for metastasis. The present study reveals a potent and selective activity of PRAK in the regulation of tumor metastasis. While showing no apparent effect on the growth of primary breast cancers or subcutaneously inoculated tumor lines, Prak deficiency abrogates lung metastases in PyMT mice or mice receiving intravenous injection of tumor cells. Consistently, PRAK expression is closely associated with metastatic risk in human cancers. Further analysis indicates that loss of function of PRAK leads to a pronounced inhibition of HIF-1α protein synthesis, possibly due to reduced mTORC1 activities. Notably, pharmacological inactivation of PRAK with a clinically relevant inhibitor recapitulates the anti-metastatic effect of Prak depletion, highlighting the therapeutic potential of targeting PRAK in the control of metastasis.
Collapse
|
7
|
Discovery of a new molecule inducing melanoma cell death: dual AMPK/MELK targeting for novel melanoma therapies. Cell Death Dis 2021; 12:64. [PMID: 33431809 PMCID: PMC7801734 DOI: 10.1038/s41419-020-03344-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.
Collapse
|
8
|
Wang S, Zhang X, Wang H, Wang Y, Chen P, Wang L. Heat Shock Protein 27 Enhances SUMOylation of Heat Shock Protein B8 to Accelerate the Progression of Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 190:2464-2477. [PMID: 33222991 DOI: 10.1016/j.ajpath.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are emerging as valuable potential molecular targets in breast cancer therapy owing to their diverse functions in cancer cells. This study investigated the potential role of heat shock protein 27 (HSP27, also known as HSPB1) in breast cancer through heat shock protein B8 (HSPB8). The correlation between HSP27 and HSPB8 was identified by using co-immunoprecipitation, immunoprecipitation, and SUMOylation assays. Through gain- and loss-of-function approaches in MCF-7 cells, the effect of HSP27 on HSPB8 expression, SUMOylation level, and protein stability of HSPB8, as well as on cell proliferation, migration, and stemness, was elucidated. A mouse xenograft model of breast cancer cells was established to verify the function of HSP27 in vivo. Results indicate that HSP27 and HSPB8 were highly expressed in breast cancer tissues and MCF-7 cells. HSP27 was also found to induce the SUMOylation of HSPB8 at the 106 locus and subsequently increased its protein stability, which resulted in accelerated proliferation, migration, and stemness of breast cancer cells in vitro along with increased tumor metastasis of breast cancer in vivo. However, these results could be reversed by the knockdown of HSPB8. Overall, HSP27 induces SUMOylation of HSPB8 to promote HSPB8 expression, thereby endorsing proliferation and metastasis of breast cancer cells. This study may provide insight for the development of new targets for breast cancer.
Collapse
Affiliation(s)
- Shuai Wang
- School of Medical Imaging, Weifang Medical University, Weifang, China; Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China; Qingdao Cancer Institute, Qingdao, China
| | - Xinyan Zhang
- Department of Intervention, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Haiwei Wang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Yang Wang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Peng Chen
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Longgang Wang
- Department of General Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
9
|
Do KT, O'Sullivan Coyne G, Hays JL, Supko JG, Liu SV, Beebe K, Neckers L, Trepel JB, Lee MJ, Smyth T, Gannon C, Hedglin J, Muzikansky A, Campos S, Lyons J, Ivy P, Doroshow JH, Chen AP, Shapiro GI. Phase 1 study of the HSP90 inhibitor onalespib in combination with AT7519, a pan-CDK inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 86:815-827. [PMID: 33095286 DOI: 10.1007/s00280-020-04176-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE We conducted a phase 1 trial of the HSP90 inhibitor onalespib in combination with the CDK inhibitor AT7519, in patients with advanced solid tumors to determine the safety profile and maximally tolerated dose, pharmacokinetics, preliminary antitumor activity, and to assess the pharmacodynamic (PD) effects on HSP70 expression in patient-derived PBMCs and plasma. METHODS This study followed a 3 + 3 trial design with 1 week of intravenous (IV) onalespib alone, followed by onalespib/AT7519 (IV) on days 1, 4, 8, and 11 of a 21-days cycle. PK and PD samples were collected at baseline, after onalespib alone, and following combination therapy. RESULTS Twenty-eight patients were treated with the demonstration of downstream target engagement of HSP70 expression in plasma and PBMCs. The maximally tolerated dose was onalespib 80 mg/m2 IV + AT7519 21 mg/m2 IV. Most common drug-related adverse events included Grade 1/2 diarrhea (79%), fatigue (54%), mucositis (57%), nausea (46%), and vomiting (50%). Partial responses were seen in a palate adenocarcinoma and Sertoli-Leydig tumor; a colorectal and an endometrial cancer patient both remained on study for ten cycles with stable disease as the best response. There were no clinically relevant PK interactions for either drug. CONCLUSIONS Combined onalespib and AT7519 is tolerable, though below monotherapy RP2D. Promising preliminary clinical activity was seen. Further benefit may be seen with the incorporation of molecular signature pre-selection. Further biomarker development will require the assessment of the on-target impact on relevant client proteins in tumor tissue.
Collapse
Affiliation(s)
- Khanh T Do
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Center for Cancer Therapeutic Innovation, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue -DA2010, Boston, MA, 02215, USA.
| | | | - John L Hays
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey G Supko
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Stephen V Liu
- Georgetown University Medical Center, Washington, DC, USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics Center, Boston, MA, USA
| | | | | | - Percy Ivy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
10
|
Small Heat Shock Proteins in Cancers: Functions and Therapeutic Potential for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21186611. [PMID: 32927696 PMCID: PMC7555140 DOI: 10.3390/ijms21186611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that play essential roles in response to cellular stresses and protein homeostasis. Investigations of sHSPs reveal that sHSPs are ubiquitously expressed in numerous types of tumors, and their expression is closely associated with cancer progression. sHSPs have been suggested to control a diverse range of cancer functions, including tumorigenesis, cell growth, apoptosis, metastasis, and chemoresistance, as well as regulation of cancer stem cell properties. Recent advances in the field indicate that some sHSPs have been validated as a powerful target in cancer therapy. In this review, we present and highlight current understanding, recent progress, and future challenges of sHSPs in cancer development and therapy.
Collapse
|
11
|
Variations in the Expression Pattern of HSP27 and MSK1 Genes During the Development of Prehierarchical Follicles in the Zi Geese ( Anser Cygnoides). ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The p38MAPKs (mitogen-activated protein kinases) signaling contributes a pivotal role in mammalian ovarian follicular development; however, the knowledge regarding their expression in geese remains unresolved. The objective of the current study was to determine the spatio-temporal expression of heat shock protein 27 (HSP27) and mitogen- and stress-activated protein kinase 1 (MSK1) genes in the prehierarchical follicles during geese ovarian development. The prehierarchical follicles samples were harvested from 35- to 37-week-old healthy laying geese. HSP27 and MSK1 relative expression in various sized prehierachical follicles was detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. Follicular wall localization of HSP27 and MSK1 was examined by using immunohistochemistry. Our results at mRNA level indicated that HSP27 was highly expressed in middle white follicles whereas MSK1 was predominantly expressed in small white follicles. The western blotting results for HSP27 and MSK1 were inconsistent with the RT-qPCR results in various stages of prehierachical follicular development but noticeably, HSP27 proteins were still expressed more in middle white follicles while MSK1 proteins were more abundant in primary follicles. At different stages of prehierarchical development, immunodetections in the granulosa and theca cells revealed that HSP27 was intensively localized in middle white follicles while strong detections of MSK1 were observed in large white follicles. These results indicate HSP27 and MSK1 might be associated to the key regulators of folliculogenesis in geese.
Collapse
|
12
|
Mazzoldi EL, Pastò A, Ceppelli E, Pilotto G, Barbieri V, Amadori A, Pavan S. Casein Kinase 1 Delta Regulates Cell Proliferation, Response to Chemotherapy and Migration in Human Ovarian Cancer Cells. Front Oncol 2019; 9:1211. [PMID: 31799185 PMCID: PMC6874158 DOI: 10.3389/fonc.2019.01211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Casein kinase 1 delta (CK1δ) has a tumor-promoting role in different cancers and it is genetically amplified in a portion of human epithelial ovarian cancer (EOC). CK1δ is involved in pleiotropic cellular functions such as cell proliferation, DNA damage, and migration. We specifically knocked down CK1δ by short hairpin RNA (shRNA) in human ovarian cancer cells and we performed proliferation, chemosensitivity, as well as in vitro and in vivo migration assays. CK1δ knocked-down cells displayed reduced proliferation capability both in vitro and in vivo. Nonetheless, these cells were sensitized to the first line chemotherapeutic agent carboplatin (CPT), and this observation could be associated to reduced expression levels of p21(Cip1/Waf1), involved in DNA damage response, and the anti-apoptotic X-linked inhibitor of apoptosis protein (XIAP). Moreover, CK1δ knocked-down cells were affected in their migratory and lung homing capability, even if in opposite ways, i.e., IGROV1, SKOV3 and MES-OV lost, while OVCAR3 gained motility potential. The results suggest CK1δ as a potential exploitable target for pharmacological EOC treatment, but they also advise further investigation of its role in cell migration.
Collapse
Affiliation(s)
- Elena Laura Mazzoldi
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Anna Pastò
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Elisa Ceppelli
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Giorgia Pilotto
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Alberto Amadori
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Simona Pavan
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| |
Collapse
|
13
|
Heat Shock Proteins Are Essential Components in Transformation and Tumor Progression: Cancer Cell Intrinsic Pathways and Beyond. Int J Mol Sci 2019; 20:ijms20184507. [PMID: 31514477 PMCID: PMC6769451 DOI: 10.3390/ijms20184507] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.
Collapse
|
14
|
Berggren KL, Restrepo Cruz S, Hixon MD, Cowan AT, Keysar SB, Craig S, James J, Barry M, Ozbun MA, Jimeno A, McCance DJ, Beswick EJ, Gan GN. MAPKAPK2 (MK2) inhibition mediates radiation-induced inflammatory cytokine production and tumor growth in head and neck squamous cell carcinoma. Oncogene 2019; 38:7329-7341. [PMID: 31417185 PMCID: PMC6883149 DOI: 10.1038/s41388-019-0945-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Radiation therapy (RT) is a cornerstone of treatment in the management of head and neck squamous cell carcinomas (HNSCC), yet treatment failure and disease recurrence are common. The p38/MK2 pathway is activated in response to cellular stressors, including radiation, and promotes tumor inflammation in a variety of cancers. We investigated MK2 pathway activation in HNSCC and the interaction of MK2 and RT in vitro and in vivo. We used a combination of an oropharyngeal SCC tissue microarray, HNSCC cell lines and patient-derived xenograft (PDX) tumor models to study the effect of RT on MK2 pathway activation and to determine how inhibition of MK2 by pharmacologic (PF-3644022) and genetic (siRNA) methods impacts tumor growth. We show that high phosphorylated MK2 (p-MK2) levels are associated with worsened disease specific survival in p16-negative HNSCC patients. RT increased p-MK2 in both p16-positive, HPV-positive and p16-negative, HPV-negative HNSCC cell lines. Pharmacologic inhibition or gene silencing of MK2 in vitro abrogated RT-induced increases in p-MK2; inflammatory cytokine expression and expression of the downstream MK2 target, heat shock protein 27 (HSP27); and markers of epithelial-to-mesenchymal transition. Mouse PDX models treated with a combination of RT and MK2 inhibitor experienced decreased tumor growth and increased survival. Our results suggest that MK2 is a potential prognostic biomarker for head and neck cancer and that MK2 pathway activation can mediate radiation resistance in HNSCC.
Collapse
Affiliation(s)
- Kiersten L Berggren
- Department of Internal Medicine, Section of Radiation Oncology, The University of New Mexico, Albuquerque, NM, USA.,The University of New Mexico Comprehensive Cancer Center, Cancer Therapeutics Program, Albuquerque, NM, USA
| | - Sebastian Restrepo Cruz
- Department of Internal Medicine, Section of Radiation Oncology, The University of New Mexico, Albuquerque, NM, USA.,The University of New Mexico Comprehensive Cancer Center, Cancer Therapeutics Program, Albuquerque, NM, USA
| | - Michael D Hixon
- Department of Internal Medicine, Section of Radiation Oncology, The University of New Mexico, Albuquerque, NM, USA.,The University of New Mexico Comprehensive Cancer Center, Cancer Therapeutics Program, Albuquerque, NM, USA
| | - Andrew T Cowan
- Department of Surgery, Division of Otolaryngology, The University of New Mexico, Albuquerque, NM, USA.,The University of New Mexico Comprehensive Cancer Center, Cancer Biology and Signaling Program, Albuquerque, NM, USA
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Stephanie Craig
- Center for Cancer Research and Cell Biology, Queen's University, Belfast, BT9 7BL, Northern Ireland
| | - Jacqueline James
- Center for Cancer Research and Cell Biology, Queen's University, Belfast, BT9 7BL, Northern Ireland
| | - Marc Barry
- Department of Pathology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle A Ozbun
- The University of New Mexico Comprehensive Cancer Center, Cancer Biology and Signaling Program, Albuquerque, NM, USA.,Department of Molecular Genetics and Microbiology, The University of New Mexico, Albuquerque, NM, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Dennis J McCance
- Department of Pathology, The University of New Mexico, Albuquerque, NM, USA
| | - Ellen J Beswick
- Department of Internal Medicine, Division of Gastroenterology, Hepataology, and Nutrition, University of Utah, Salt Lake City, UT, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
15
|
Narayanankutty V, Narayanankutty A, Nair A. Heat Shock Proteins (HSPs): A Novel Target for Cancer Metastasis Prevention. Curr Drug Targets 2019; 20:727-737. [DOI: 10.2174/1389450120666181211111815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/11/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
Abstract
Background:
Heat shock proteins (HSPs) are predominant molecular chaperones which are
actively involved in the protein folding; which is essential in protecting the structure and functioning
of proteins during various stress conditions. Though HSPs have important physiological roles, they
have been well known for their roles in various pathogenic conditions such as carcinogenesis; however,
limited literature has consolidated its potential as an anti-metastatic drug target.
Objectives:
The present review outlines the role of different HSPs on cancer progression and metastasis;
possible role of HSP inhibitors as anti-neoplastic agents is also discussed.
Methods:
The data were collected from PubMed/Medline and other reputed journal databases. The literature
that was too old and had no significant role to the review was then omitted.
Results:
Despite their strong physiological functions, HSPs are considered as good markers for cancer
prognosis and diagnosis. They have control over survival, proliferation and progression events of cancer
including drug resistance, metastasis, and angiogenesis. Since, neoplastic cells are more dependent
on HSPs for survival and proliferation, the selectivity and specificity of HSP-targeted cancer drugs
remain high. This has made various HSPs potential clinical and experimental targets for cancer prevention.
An array of HSP inhibitors has been in trials and many others are in experimental conditions
as anticancer and anti-metastatic agents. Several natural products are also being investigated for their
efficacy for anticancer and anti-metastatic agents by modulating HSPs.
Conclusion:
Apart from their role as an anticancer drug target, HSPs have shown to be promising targets
for the prevention of cancer progression. Extensive studies are required for the use of these molecules
as anti-metastatic agents. Further studies in this line may yield specific and effective antimetastatic
agents.
Collapse
Affiliation(s)
| | - Arunaksharan Narayanankutty
- Postgraduate & Research Department of Zoology, St. Joseph’s College, Devagiri (Autonomous), Calicut, Kerala- 673 008, India
| | - Anusree Nair
- Cell and Tissue Culture Department, Micro labs, Bangalore, India
| |
Collapse
|
16
|
Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLAR L and inhibit apoptosis in human non-small cell lung cancer cells. J Exp Clin Cancer Res 2019; 38:181. [PMID: 31046799 PMCID: PMC6498657 DOI: 10.1186/s13046-019-1182-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/17/2019] [Indexed: 02/05/2023] Open
Abstract
Background GMEB1 was originally identified via its interaction with GMEB2, which binds to the promoter region of the tyrosine aminotransferase (TAT) gene and modulates transactivation of the glucocorticoid receptor gene. In the cytosol, GMEB1 interacts with and inhibits CASP8, but the molecular mechanism is currently unknown. Methods Human non-small cell lung cancer cells and 293FT cells were used to investigate the function of GMEB1/USP40/CFLARL complex by WB, GST Pull-Down Assay, Immunoprecipitation, Immunofluorescence and Flow cytometry analysis. A549 cells overexpressing green fluorescent protein and GMEB1 shRNA were used for tumor xenograft using female athymic nu/nu 4-week-old mice. Results We found GMEB1 interacted with CFLARL (also known as c-FLIPL) in the cytosol and promoted its stability. USP40 targeted CFLARL for K48-linked de-ubiquitination. GMEB1 promoted the binding of USP40 to CFLARL. USP40 knockdown did not increase CFLARL protein level despite GMEB1 overexpression, suggesting GMEB1 promotes CFLARL stability via USP40. Additionally, GMEB1 inhibited the activation of pro-caspase 8 and apoptosis in non-small cell lung cancer (NSCLC) cell via CFLARL stabilization. Also, GMEB1 inhibited the formation of DISC upon TRAIL activation. CFLARL enhanced the binding of GMEB1 and CASP8. Downregulation of GMEB1 inhibited A549 xenograft tumor growth in vivo. Conclusions Our findings show the de-ubiquitinase USP40 regulates the ubiquitination and degradation of CFLARL; and GMEB1 acts as a bridge protein for USP40 and CFLARL. Mechanistically, we found GMEB1 inhibits the activation of CASP8 by modulating ubiquitination and degradation of CFLARL. These findings suggest a novel strategy to induce apoptosis through CFLARL targeting in human NSCLC cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1182-3) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Li J, Huang J, Lyu Y, Huang J, Jiang Y, Xie C, Pu K. Photoactivatable Organic Semiconducting Pro-nanoenzymes. J Am Chem Soc 2019; 141:4073-4079. [PMID: 30741538 DOI: 10.1021/jacs.8b13507] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Therapeutic enzymes hold great promise for cancer therapy; however, in vivo remote control of enzymatic activity to improve their therapeutic specificity remains challenging. This study reports the development of an organic semiconducting pro-nanoenzyme (OSPE) with a photoactivatable feature for metastasis-inhibited cancer therapy. Upon near-infrared (NIR) light irradiation, this pro-nanoenzyme not only generates cytotoxic singlet oxygen (1O2) for photodynamic therapy (PDT), but also triggers a spontaneous cascade reaction to induce the degradation of ribonucleic acid (RNA) specifically in tumor microenvironment. More importantly, OSPE-mediated RNA degradation is found to downregulate the expression of metastasis-related proteins, contributing to the inhibition of metastasis after treatment. Such a photoactivated and cancer-specific synergistic therapeutic action of OSPE enables complete inhibition of tumor growth and lung metastasis in mouse xenograft model, which is not possible for the counterpart PDT nanoagent. Thus, our study proposes a phototherapeutic-proenzyme approach toward complete-remission cancer therapy.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , Singapore 637457 , Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , Singapore 637457 , Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , Singapore 637457 , Singapore
| | - Jingsheng Huang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , Singapore 637457 , Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , Singapore 637457 , Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , Singapore 637457 , Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , Singapore 637457 , Singapore
| |
Collapse
|
18
|
Zhang B, Xie F, Aziz AUR, Shao S, Li W, Deng S, Liao X, Liu B. Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress. Biomolecules 2019; 9:biom9020050. [PMID: 30704117 PMCID: PMC6406706 DOI: 10.3390/biom9020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis.
Collapse
Affiliation(s)
- Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|
19
|
Han L, Jiang Y, Han D, Tan W. Hsp27 regulates epithelial mesenchymal transition, metastasis and proliferation in colorectal carcinoma. Oncol Lett 2018; 16:5309-5316. [PMID: 30250600 DOI: 10.3892/ol.2018.9286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
The primary factor associated with poor survival rate in patients with colorectal carcinoma (CRC) is the presence of metastasis. The underlying molecular mechanisms of CRC metastasis are yet to be fully elucidated. The present study investigated the function of heat shock protein 27 (Hsp27) on the invasion and proliferation of CRC cells. The clinical significance of Hsp27 was evaluated using tissue microarray analysis (n=81). Invasion and metastasis assays were used to determine the function of Hsp27 in CRC metastasis in vitro and in vivo using RNA interference and the ectopic expression of Hsp27. The upregulation of Hsp27 has been frequently identified in CRC tissues. Patients with CRC and a high expression level of Hsp27 have a reduced overall survival rate. Silencing Hsp27 inhibited the growth and invasion of CRC cells in vitro and in vivo, whereas ectopic overexpression of Hsp27 promoted the proliferation and invasion of CRC cells in vitro. Furthermore, depletion of Hsp27 expression inhibited the epithelial-to-mesenchymal transition (EMT), whilst ectopic overexpression of Hsp27 induced EMT. The results of the present study indicated that Hsp27 serves an important function in the aggressiveness of CRC through inducing EMT. Hsp27 suppression may represent a potential therapeutic option for the suppression of CRC progression.
Collapse
Affiliation(s)
- Lu Han
- Department of Surgery, Shanghai Jiangong Hospital, Shanghai 200083, P.R. China
| | - Yong Jiang
- Department of Surgery, Shanghai Jiangong Hospital, Shanghai 200083, P.R. China
| | - Dongxing Han
- Department of Surgery, Shanghai Jiangong Hospital, Shanghai 200083, P.R. China
| | - Weilin Tan
- Department of Surgery, Shanghai Jiangong Hospital, Shanghai 200083, P.R. China
| |
Collapse
|
20
|
Wang Y, Lu Z, Wang N, Feng J, Zhang J, Luan L, Zhao W, Zeng X. Long noncoding RNA DANCR promotes colorectal cancer proliferation and metastasis via miR-577 sponging. Exp Mol Med 2018; 50:1-17. [PMID: 29717105 PMCID: PMC5938019 DOI: 10.1038/s12276-018-0082-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/23/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various malignant tumors, including colorectal cancer (CRC). Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) is overexpressed in CRC patients, but whether it affects CRC proliferation and metastasis via regulation of heat shock protein 27 (HSP27) remains unclear. In the present study, we found that DANCR was highly expressed and correlated with proliferation and metastasis in CRC. In addition, we demonstrated that DANCR and HSP27 were both targets of microRNA-577 (miR-577) and shared the same binding site. Furthermore, we revealed that DANCR promoted HSP27 expression and its mediation of proliferation/metastasis via miR-577 sponging. Finally, using an in vivo study, we confirmed that overexpression of DANCR promoted CRC tumor growth and liver metastasis. The present study demonstrated the function of DANCR in CRC and might provide a new target in the treatment of CRC.
Collapse
Affiliation(s)
- Yong Wang
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Zhi Lu
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ningnin Wang
- The 2nd Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Jianzhou Feng
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Junjie Zhang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Lan Luan
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Xiandong Zeng
- Department of Surgical Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China.
| |
Collapse
|
21
|
Spheroid growth in ovarian cancer alters transcriptome responses for stress pathways and epigenetic responses. PLoS One 2017; 12:e0182930. [PMID: 28793334 PMCID: PMC5549971 DOI: 10.1371/journal.pone.0182930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT). In lieu of traditional monolayer cell culture, EMT and cancer progression in general is best characterized through the use of 3D spheroid models. In this study, we examine gene expression changes through microarray analysis in spheroid versus monolayer ovarian cancer cells treated with TGFβ to induce EMT. Transcripts that included Coiled-Coil Domain Containing 80 (CCDC80), Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 15 (SLC6A15), Semaphorin 3E (SEMA3E) and PIF1 5'-To-3' DNA Helicase (PIF1) were downregulated more than 10-fold in the 3D cells while Inhibitor Of DNA Binding 2, HLH Protein (ID2), Regulator Of Cell Cycle (RGCC), Protease, Serine 35 (PRSS35), and Aldo-Keto Reductase Family 1, Member C1 (AKR1C1) were increased more than 50-fold. Interestingly, EMT factors, stress responses and epigenetic processes were significantly affected by 3D growth. The heat shock response and the oxidative stress response were also identified as transcriptome responses that showed significant changes upon 3D growth. Subnetwork enrichment analysis revealed that DNA integrity (e.g. DNA damage, genetic instability, nucleotide excision repair, and the DNA damage checkpoint pathway) were altered in the 3D spheroid model. In addition, two epigenetic processes, DNA methylation and histone acetylation, were increased with 3D growth. These findings support the hypothesis that three dimensional ovarian cell culturing is physiologically different from its monolayer counterpart.
Collapse
|
22
|
Ge H, Du J, Xu J, Meng X, Tian J, Yang J, Liang H. SUMOylation of HSP27 by small ubiquitin-like modifier 2/3 promotes proliferation and invasion of hepatocellular carcinoma cells. Cancer Biol Ther 2017; 18:552-559. [PMID: 28665748 DOI: 10.1080/15384047.2017.1345382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Primary hepatocellular carcinoma (PHC) is a major health problem worldwide and is one of the 10 most commonly diagnosed cancers in China. Heat shock protein 27 (HSP27) were found to be overexpressed in a wide range of malignancies including PHC, however, post-translational modification of HSP27 still needs exploration in PHC. Recently, SUMOylation, an important post-translational modification associating with the development of many kinds of cancers has been intensively studied. In the current study, mRNA and protein level of HSP27 in archived tumor samples representing various pathological characteristics of PHC were examined, and modification of HSP27 by SUMO2/3 was investigated. HSP27 were expressed abundantly in patients' tumor tissues, and found to be associated with pathological progression. Besides, HSP27 was also elevated significantly in liver cancer cell lines Huh7 and HepG2 compared with human hepatocyte cells L02. Furthermore, knockdown of HSP27 was found to be associated with the decreased proliferation and invasion ability in Huh7 and HepG2 cells. Immunofluorescence assay showed that HSP27 and SUMO2/3 were co-localized in the subcellular, and co-immunoprecipitation verified the interaction between HSP27 and SUMO2/3. Overexpression of SUMO2/3 upregulated the HSP27 protein level and promotes Huh7 and HepG2 cell proliferation and invasion, and vice versa when the SUMO2/3 was knockdown. Taken together, increased protein level of HSP27 through SUMO2/3-mediated SUMOylation plays crucial roles in the progression of PHC, and this finding may shed light on developing potential therapeutic targets for PHC.
Collapse
Affiliation(s)
- Haize Ge
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Juan Du
- b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China.,e Department of Emergency, the Third Central Hospital of Tianjin , Tianjin , China
| | - Jingman Xu
- f Heart Institute, Medical Experimental Research Center , North China University of Science and Technology , Tangshan , Hebei , China
| | - Xiangliang Meng
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Jinchuan Tian
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Jie Yang
- a Department of Clinical Laboratory, the Third Central Hospital of Tianjin.,b Tianjin Key Laboratory of Artificial Cell.,c Artificial Cell Engineering Technology Research Center of Public Health Ministry , Tianjin , China
| | - Huimin Liang
- d School of Nursing , Tianjin Medical University , Tianjin , China
| |
Collapse
|
23
|
Heat Shock Protein HSP27 Secretion by Ovarian Cancer Cells Is Linked to Intracellular Expression Levels, Occurs Independently of the Endoplasmic Reticulum Pathway and HSP27's Phosphorylation Status, and Is Mediated by Exosome Liberation. DISEASE MARKERS 2017; 2017:1575374. [PMID: 28325957 PMCID: PMC5343262 DOI: 10.1155/2017/1575374] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 12/05/2022]
Abstract
The heat shock protein HSP27 has been correlated in ovarian cancer (OC) patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker.
Collapse
|
24
|
Mo XM, Li L, Zhu P, Dai YJ, Zhao TT, Liao LY, Chen GG, Liu ZM. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells. Mol Cell Endocrinol 2016; 431:71-87. [PMID: 27179757 DOI: 10.1016/j.mce.2016.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
17β-estradiol (E2) has been suggested to play a role in the development and progression of papillary thyroid cancer. Heat shock protein 27 (Hsp27) is a member of the Hsp family that is responsible for cell survival under stressful conditions. Previous studies have shown that the 5'-promoter region of Hsp27 gene contains a specificity protein-1 (Spl) and estrogen response element half-site (ERE-half), which contributes to Hsp27 induction by E2 in breast cancer cells. However, it is unclear whether Hsp27 can be up-regulated by E2 and which estrogen receptor (ER) isoform and tethered transcription factor are involved in this regulation in papillary thyroid cancer cells. In the present study, we demonstrated that Hsp27 can be effectively up-regulated by E2 at mRNA and protein levels in human K1 and BCPAP papillary thyroid cancer cells which have more than two times higher level of ERα than that of ERβ. The up-regulation of Hsp27 by E2 is mediated by ERα/Sp1 and ERβ has repressive effect on this ERα/Sp1-mediated up-regulation of Hsp27. Moreover, we showed that the up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis through interaction with procaspase-3. Targeting this pathway may be a potential strategy for therapy of papillary thyroid cancer.
Collapse
Affiliation(s)
- Xiao-Mei Mo
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Li Li
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yu-Jie Dai
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ting-Ting Zhao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ling-Yao Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
The integrin-linked kinase-associated phosphatase (ILKAP) is a regulatory hub of ovarian cancer cell susceptibility to platinum drugs. Eur J Cancer 2016; 60:59-68. [DOI: 10.1016/j.ejca.2016.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/04/2015] [Accepted: 02/25/2016] [Indexed: 01/13/2023]
|
26
|
Zhang Y, Tao X, Jin G, Jin H, Wang N, Hu F, Luo Q, Shu H, Zhao F, Yao M, Fang J, Cong W, Qin W, Wang C. A Targetable Molecular Chaperone Hsp27 Confers Aggressiveness in Hepatocellular Carcinoma. Am J Cancer Res 2016; 6:558-70. [PMID: 26941848 PMCID: PMC4775865 DOI: 10.7150/thno.14693] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is an ATP-independent molecular chaperone and confers survival advantages and resistance to cancer cells under stress conditions. The effects and molecular mechanisms of Hsp27 in HCC invasion and metastasis are still unclear. In this study, hepatocellular carcinoma (HCC) tissue array (n = 167) was used to investigate the expression and prognostic relevance of Hsp27 in HCC patients. HCC patients with high expression of Hsp27 exhibited poor prognosis. Overexpression of Hsp27 led to the forced invasion of HCC cells, whereas silencing Hsp27 attenuated invasion and metastasis of HCC cells in vitro and in vivo. We revealed that Hsp27 activated Akt signaling, which in turn promoted MMP2 and ITGA7 expression and HCC metastasis. We further observed that targeting Hsp27 using OGX-427 obviously suppressed HCC metastasis in two metastatic models. These findings indicate that Hsp27 is a useful predictive factor for prognosis of HCC and it facilitates HCC metastasis through Akt signaling. Targeting Hsp27 with OGX-427 may represent an attractive therapeutic option for suppressing HCC metastasis.
Collapse
|
27
|
Calderwood SK, Gong J. Heat Shock Proteins Promote Cancer: It's a Protection Racket. Trends Biochem Sci 2016; 41:311-323. [PMID: 26874923 DOI: 10.1016/j.tibs.2016.01.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are expressed at high levels in cancer and form a fostering environment that is essential for tumor development. Here, we review the recent data in this area, concentrating mainly on Hsp27, Hsp70, and Hsp90. The overriding role of HSPs in cancer is to stabilize the active functions of overexpressed and mutated cancer genes. Thus, elevated HSPs are required for many of the traits that underlie the morbidity of cancer, including increased growth, survival, and formation of secondary cancers. In addition, HSPs participate in the evolution of cancer treatment resistance. HSPs are also released from cancer cells and influence malignant properties by receptor-mediated signaling. Current data strongly support efforts to target HSPs in cancer treatment.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Department of Radiation Oncology, Harvard Medical School at Beth Israel Deaconess Medical Center. CLS610, 300 Brookline Avenue, Boston, MA 02215, USA.
| | - Jianlin Gong
- Department of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
28
|
Jiang Q, Zhang Z, Li S, Wang Z, Ma Y, Hu Y. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen‑transformed MEF cells. Mol Med Rep 2015; 12:6517-26. [PMID: 26352782 PMCID: PMC4626195 DOI: 10.3892/mmr.2015.4300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
Heat shock factor 1 (Hsf1) serves an important role in regulating the proliferation of human tumor cell lines in vitro and tissue specific tumorigenesis in certain mouse models. However, its role in viral‑oncogenesis remains to be fully elucidated. In the current study, the role of Hsf1 in fibroblastoma derived from simian virus 40/T antigen (SV40/TAG)‑transformed mouse embryonic fibroblast (MEF) cell lines was investigated. Knockout of Hsf1 inhibited MEF cell proliferation in vitro and fibroblastoma growth and metastasis to the lungs in vivo in nude mice. Knockout of Hsf1 increased the protein expression levels of p53 and phosphorylated retinoblastoma protein (pRb), however reduced the expression of heat shock protein 25 (Hsp25) in addition to the expression of the angiogenesis markers vascular endothelial growth factor, cluster of differentiation 34 and factor VIII related antigen. Furthermore, immunoprecipitation indicated that knockout of Hsf1 inhibited the association between SV40/TAG and p53 or pRb. These data suggest that Hsf1 is involved in the regulation of SV40/TAG‑derived fibroblastoma growth and metastasis by modulating the association between SV40/TAG and tumor suppressor p53 and pRb. The current study provides further evidence that Hsf1 may be a novel therapeutic target in the treatment of cancer.
Collapse
Affiliation(s)
- Qiying Jiang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Zhi Zhang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Shulian Li
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Zhaoyang Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Yuanfang Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| | - Yanzhong Hu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International Union Laboratory of Antibody Medicine and Chaperone, Henan University School of Medicine, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
29
|
Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, Qin W. Heat shock proteins in hepatocellular carcinoma: Molecular mechanism and therapeutic potential. Int J Cancer 2015; 138:1824-34. [PMID: 26853533 DOI: 10.1002/ijc.29723] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) are highly conserved proteins, which are expressed at low levels under normal conditions, but significantly induced in response to cellular stresses. As molecular chaperones, HSPs play crucial roles in protein homeostasis, apoptosis, invasion and cellular signaling transduction. The induction of HSPs is an important part of heat shock response, which could help cancer cells to adapt to stress conditions. Because of the constant stress condition in tumor microenvironment, HSPs overexpression is widely reported in many human cancers. In light of the significance of HSPs for cancer cells to survive and obtain invasive phenotype under stress condition, HSPs are often associated with poor prognosis and treatment resistance in many types of human cancers. It has been described that upregulation of HSPs may serve as diagnostic and prognostic markers in hepatocellular carcinoma (HCC). Targeting HSPs with specific inhibitor alone or in combination with chemotherapy regimens holds promise for the improvement of outcomes for HCC patients. In this review, we summarize the expression profiles, functions and molecular mechanisms of HSPs (HSP27, HSP70 and HSP90) as well as a HSP-like protein (clusterin) in HCC. In addition, we address progression and challenges in targeting these HSPs as novel therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Cordeiro CR, Alfaro TM, Freitas S, Cemlyn-Jones J. Idiopathic pulmonary fibrosis. Lung Cancer 2015. [DOI: 10.1183/2312508x.10009414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Xie CR, Sun H, Wang FQ, Li Z, Yin YR, Fang QL, Sun Y, Zhao WX, Zhang S, Zhao WX, Wang XM, Yin ZY. Integrated analysis of gene expression and DNA methylation changes induced by hepatocyte growth factor in human hepatocytes. Mol Med Rep 2015; 12:4250-4258. [PMID: 26099202 PMCID: PMC4526041 DOI: 10.3892/mmr.2015.3974] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/08/2015] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the one of most common malignant tumors. The tumor microenvironment has a role in not only supporting growth and survival of tumor cells, but also triggering tumor recurrence and metastasis. Hepatocyte growth factor (HGF), one of the important growth factors in the tumor microenvironment, has an important role in angiogenesis, tumorigenesis and regeneration. However, the exact mechanism by which HGF regulates HCC initiation and development via epigenetic reprogramming has remained elusive. The present study focused on the epigenetic modification and target tumor-suppressive genes of HGF treatment in HCC. Expression profiling and DNA methylation array were performed to investigate the function of HGF and examine global genomic DNA methylation changes, respectively. Integrated analysis of gene expression and DNA methylation revealed potential tumor suppressor genes (TSGs) in HCC. The present study showed the multiple functions of HGF in tumorous and nontumorous pathways and global genomic DNA methylation changes. HGF treatment upregulated the expression of DNA methyltransferase 1 (DNMT1). Overexpression of DNMT1 in HCC patients correlated with the malignant potential and poor prognosis of HCC. Furthermore, integration analysis of gene expression and DNA methylation changes revealed novel potential tumor suppressor genes TSGs including MYOCD, PANX2 and LHX9. The present study has provided mechanistic insight into epigenetic repression of TSGs through HGF-induced DNA hypermethylation.
Collapse
Affiliation(s)
- Cheng-Rong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Hongguang Sun
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Fu-Qiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Yi-Rui Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Qin-Liang Fang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Yu Sun
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Wen-Xiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Wen-Xing Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Xiao-Min Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
32
|
Pai HC, Kumar S, Shen CC, Liou JP, Pan SL, Teng CM. MT-4 suppresses resistant ovarian cancer growth through targeting tubulin and HSP27. PLoS One 2015; 10:e0123819. [PMID: 25874627 PMCID: PMC4397017 DOI: 10.1371/journal.pone.0123819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/07/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines. METHODS To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization was determined using a tubulin binding assay. RESULTS MT-4 (2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol), a derivative of moscatilin, can inhibit both sensitive A2780 and multidrug-resistant NCI-ADR/res cell growth and viability. MT-4 inhibited tubulin polymerization to induce G2/M arrest followed by caspase-mediated apoptosis. Further studies indicated that MT-4 is not a substrate of P-glycoprotein (p-gp). MT-4 also caused G2/M cell cycle arrest, accompanied by the upregulation of cyclin B, p-Thr161 Cdc2/p34, polo-like kinase 1 (PLK1), Aurora kinase B, and phospho-Ser10-histone H3 protein levels. In addition, we found that p38 MAPK pathway activation was involved in MT-4-induced apoptosis. Most importantly, MT-4 also decreased heat shock protein 27 expression and reduced its interaction with caspase-3, which inured cancer cells to chemotherapy resistance. Treatment of cells with SB203580 or overexpression of dominant negative (DN)-p38 or wild-type HSP27 reduced PARP cleavage caused by MT-4. MT-4 induced apoptosis through regulation of p38 and HSP27. Our xenograft models also show the in vivo efficacy of MT-4. MT-4 inhibited both A2780 and NCI-ADR/res cell growth in vitro and in vivo. CONCLUSION These findings indicate that MT-4 could be a potential lead compound for the treatment of multidrug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Hui Chen Pai
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sunil Kumar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow Lin Pan
- Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei, Taiwan
| | - Che Ming Teng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Suzuki M, Matsushima-Nishiwaki R, Kuroyanagi G, Suzuki N, Takamatsu R, Furui T, Yoshimi N, Kozawa O, Morishige KI. Regulation by heat shock protein 22 (HSPB8) of transforming growth factor-α-induced ovary cancer cell migration. Arch Biochem Biophys 2015; 571:40-9. [PMID: 25731856 DOI: 10.1016/j.abb.2015.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
Accumulating evidence suggests that heat shock proteins (HSPs) are implicated in progression of cancer. HSP22 (HSPB8), a small HSP, is recognized to be ubiquitously expressed in various tissues. However, the expression and the role of HSP22 in ovarian cancer remain to be clarified. In the present study, we investigated the involvement of HSP22 in transforming growth factor (TGF)-α-induced migration of ovarian cancer cells. The expression of HSP22 was detected in a serous ovarian cancer cell line, SKOV3.ip1. The migration was reduced by down-regulation of HSP22 expression. The TGF-α-induced migration was reduced by SB203580 (a p38 MAP kinase inhibitor), SP600125 (a SAPK/JNK inhibitor) and Y27632 (a Rho-kinase inhibitor). However, down-regulation of HSP22 had little effect on the TGF-α-induced phosphorylation of p38 MAP kinase, SAPK/JNK and MYPT, a target protein of Rho-kinase. The HSP22 expression was further analyzed in 20 resected specimens of human ovarian serous carcinoma. The expression of HSP22 was detected in all the twenty tissues (8.24-109.22 pg/mg protein), and the cases with highly expression of HSP22 showed a tendency to acquire the progressive ability. Our results strongly suggest that HSP22 acts as a positive regulator in TGF-α-induced migration of ovarian cancer cells, subsequently directing ovarian cancer toward progression.
Collapse
Affiliation(s)
- Mariko Suzuki
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Noriko Suzuki
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Reika Takamatsu
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Tatsuro Furui
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Naoki Yoshimi
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Ken-ichirou Morishige
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
34
|
Katsogiannou M, Andrieu C, Rocchi P. Heat shock protein 27 phosphorylation state is associated with cancer progression. Front Genet 2014; 5:346. [PMID: 25339975 PMCID: PMC4186339 DOI: 10.3389/fgene.2014.00346] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
Understanding the mechanisms that control stress-induced survival is critical to explain how tumors frequently resist to treatment and to improve current anti-cancer therapies. Cancer cells are able to cope with stress and escape drug toxicity by regulating heat shock proteins (Hsps) expression and function. Hsp27 (HSPB1), a member of the small Hsp family, represents one of the key players of many signaling pathways contributing to tumorigenicity, treatment resistance, and apoptosis inhibition. Hsp27 is overexpressed in many types of cancer and its functions are regulated by post-translational modifications, such as phosphorylation. Protein phosphorylation is the most widespread signaling mechanism in eukaryotic cells, and it is involved in all fundamental cellular processes. Aberrant phosphorylation of Hsp27 has been associated with cancer but the molecular mechanisms by which it is implicated in cancer development and progression remain undefined. This mini-review focuses on the role of phosphorylation in Hsp27 functions in cancer cells and its potential usefulness as therapeutic target in cancer.
Collapse
Affiliation(s)
- Maria Katsogiannou
- Institut National de la Santé et de la Recherche Médicale, Unités Mixtes de Recherche 1068, Centre de Recherche en Cancérologie de Marseille Marseille, France ; Institut Paoli-Calmettes Marseille, France ; Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale Unités Mixtes de Recherche 1068, Aix-Marseille Université Marseille, France ; Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7258, Centre de Recherche en Cancérologie de Marseille Marseille, France
| | - Claudia Andrieu
- Institut National de la Santé et de la Recherche Médicale, Unités Mixtes de Recherche 1068, Centre de Recherche en Cancérologie de Marseille Marseille, France ; Institut Paoli-Calmettes Marseille, France ; Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale Unités Mixtes de Recherche 1068, Aix-Marseille Université Marseille, France ; Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7258, Centre de Recherche en Cancérologie de Marseille Marseille, France
| | - Palma Rocchi
- Institut National de la Santé et de la Recherche Médicale, Unités Mixtes de Recherche 1068, Centre de Recherche en Cancérologie de Marseille Marseille, France ; Institut Paoli-Calmettes Marseille, France ; Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale Unités Mixtes de Recherche 1068, Aix-Marseille Université Marseille, France ; Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 7258, Centre de Recherche en Cancérologie de Marseille Marseille, France
| |
Collapse
|
35
|
Wang X, Chen M, Zhou J, Zhang X. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int J Oncol 2014; 45:18-30. [PMID: 24789222 DOI: 10.3892/ijo.2014.2399] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Among the heat shock proteins (HSP), HSP27, HSP70 and HSP90 are the most studied stress-inducible HSPs, and are induced in response to a wide variety of physiological and environmental insults, thus allowing cells to survive to lethal conditions based on their powerful cytoprotective functions. Different functions of HSPs have been described to explain their cytoprotective functions, including their most basic role as molecular chaperones, that is to regulate protein folding, transport, translocation and assembly, especially helping in the refolding of misfolded proteins, as well as their anti-apoptotic properties. In cancer cells, the expression and/or activity of the three HSPs is abnormally high, and is associated with increased tumorigenicity, metastatic potential of cancer cells and resistance to chemotherapy. Associating with key apoptotic factors, they are powerful anti-apoptotic proteins, having the capacity to block the cell death process at different levels. Altogether, the properties suggest that HSP27, HSP70 and HSP90 are appropriate targets for modulating cell death pathways. In this review, we summarize the role of HSP90, HSP70 and HSP27 in apoptosis and the emerging strategies that have been developed for cancer therapy based on the inhibition of the three HSPs.
Collapse
Affiliation(s)
- Xiaoxia Wang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| | - Meijuan Chen
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| | - Jing Zhou
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| | - Xu Zhang
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, P.R. China
| |
Collapse
|