1
|
Huang B, Ding J, Guo H, Wang H, Xu J, Zheng Q, Zhou L. SIRT3 Regulates the ROS-FPR1/HIF-1α Axis under Hypoxic Conditions to Influence Lung Cancer Progression. Cell Biochem Biophys 2023; 81:813-821. [PMID: 37747648 PMCID: PMC10611604 DOI: 10.1007/s12013-023-01180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Hypoxia-inducible factor (HIF-1α) is a therapeutic target in lung cancer, and the deacetylase sirtuin 3 (SIRT3) is closely associated with tumorigenesis. Formyl peptide receptor 1 (FPR1) is involved in a wide range of physiopathological processes in various tumor cells. We explored whether SIRT3 affects the development of lung cancer by regulating the reactive oxygen species (ROS)-FPR1/HIF-1α axis under hypoxic conditions. The effects of SIRT3 overexpression on the levels of FPR1, HIF-1α, ROS, inflammatory factors, and cell proliferation and migration in A549 cells under hypoxic conditions were assessed in combination with the FPR1 inhibitor. BALB/c nude mice were subcutaneously injected with cancer cells transfected/untransfected with SIRT3 overexpressing lentiviral vectors. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to detect SIRT3 expression and the expression levels of IL-1β, TNF-α, and IL-6, respectively, in tumor tissues. Cell proliferation, invasion, migration, and IL-1β, TNF-α, IL-6, and ROS levels were significantly higher in the Hypoxia group than in the Control group. Moreover, the mRNA and protein expression levels of SIRT3 were significantly down-regulated, whereas they were significantly up-regulated for FPR1 and HIF-1α. In contrast, SIRT3 overexpression in a hypoxic environment inhibited cell proliferation, invasion, and migration, decreased IL-1β, TNF-α, IL-6, and ROS levels, up-regulated the mRNA and protein expression levels of SIRT3, and down-regulated the mRNA and protein expression levels of FPR1 and HIF-1α. In addition, we found the same results in tumorigenic experiments in nude mice. SIRT3 in hypoxic environments may affect tumor cell proliferation, invasion, migration, and inflammation levels via the ROS-FPR1/HIF-1α axis, thereby inhibiting tumor cell development.
Collapse
Affiliation(s)
- Bo Huang
- Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan East Lake High-Tech Development Zone Jiufeng Street Center City Community Health Service Center, Wuhan, 430074, Hubei, China.
| | - Jie Ding
- Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - HongRong Guo
- Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - HongJuan Wang
- Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - JianQun Xu
- Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - Quan Zheng
- Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| | - LiJun Zhou
- Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China
| |
Collapse
|
2
|
Hajipour S, Hosseini SM, Irani S, Tavallaie M. Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis. Genomics Inform 2023; 21:e38. [PMID: 37813634 PMCID: PMC10584645 DOI: 10.5808/gi.23039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 10/11/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DE miRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co-expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.
Collapse
Affiliation(s)
- Sara Hajipour
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran 14155-4933, Iran
| | - Sayed Mostafa Hosseini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Shiva Irani
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran 14155-4933, Iran
| | - Mahmood Tavallaie
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
3
|
Yin L, Zhang W, Pu D, Zhai X, Lin Y, Wu Q, Chang T, Hu J, Li Y, Zhou Q. Identification of Immune Subtypes of Lung Squamous Cell Carcinoma by Integrative Genome-Scale Analysis. Front Oncol 2022; 11:778549. [PMID: 35186710 PMCID: PMC8847157 DOI: 10.3389/fonc.2021.778549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
Background Characterization of the tumor microenvironment is helpful to understand the tumor immune environment of lung cancer and help predict the prognosis. Methods First, immune subtypes were identified by consensus subtype among lung squamous carcinoma (LUSC) patients. Immune cell infiltration was evaluated by CIBERSORT and ESTIMATE analyses. Then, based on differentially expressed genes (DEGs) identified, a risk score model was constructed. Finally, gene FPR1 was validated by using YTMLC-90. Findings LUSC samples were divided into four heterogeneous immune subtypes, with significantly different prognoses with subtype 4 having the poorest overall survival (OS). The immune infiltration score showed that subtype 4 was characterized as immune enriched and fibrotic, while subtype 3 was tumor enriched. DEG analysis showed that upregulated genes in subtype 4 were enriched of neutrophil and exhausted T cell-related biological processes. Based on a univariate Cox regression model, prognostic 7 immune-related genes were combined to construct a risk score model and able to predict OS rates in the validation datasets. Wound healing and transwell assay were conducted to evaluate the invasion property after activating the gene FPR1. Interpretation The analysis of tumor immune microenvironments among LUSC subtypes may provide new insights into the strategy of immunotherapy.
Collapse
Affiliation(s)
- Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqian Zhai
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
| | - Qiang Wu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tangel Chang
- Department of Radiation Oncology, University of Toledo, Toledo, OH, United States
| | - Jia Hu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, Crichton S, Goodyear CS. Annexin-A1; the culprit or the solution? Immunology 2022; 166:2-16. [PMID: 35146757 PMCID: PMC9426623 DOI: 10.1111/imm.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐A1 has a well‐defined anti‐inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid‐induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin‐A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin‐A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin‐A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lauren Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Lewis Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Kathryn McCall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aysin Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Fiona Dempsey
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Scott Crichton
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
5
|
Zhu Q, Li Y, Li L, Guo M, Zou C, Xu Y, Yang Z. MicroRNA-889-3p restrains the proliferation and epithelial-mesenchymal transformation of lung cancer cells via down-regulation of Homeodomain-interacting protein kinase 1. Bioengineered 2021; 12:10945-10958. [PMID: 34723781 PMCID: PMC8810057 DOI: 10.1080/21655979.2021.2000283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dysregulated microRNAs (miRNAs) are common in human cancers and are involved in the proliferation, promotion, and metastasis of tumor cells. Therefore, the aim of this study was to evaluate the expression and biological function of miR-889-3p in lung cancer (LC). MiR-889-3p and Homeodomain-interacting protein kinase 1 (HIPK1) expression was detected in human LC tissues and cells. The correlation of miR-889-3p with the clinicopathology of LC patients was observed. After the transfection of miR-889-3p and HIPK1-related plasmids in human LC cell line A549, several studies were employed for detection of cell growth. In addition, the targeting of miR-889-3p with HIPK1 was verified. The results clarified miR-889-3p was down-regulated, while HIPK1 was up-regulated in LC tissues. Elevated miR-889-3p or repressed HIPK1 weakened the viability, epithelial–mesenchymal transition (EMT), invasion, migration of LC cells, whereas strengthened apoptosis. MiR-889-3p targeted HIPK1; MiR-889-3p mediated HIPK1 to affect the proliferation and EMT of LC cells. Therefore, it is concluded that miR-889-3p repressing HIPK1 restrains the proliferation and EMT of LC cells, providing a novel target for LC therapy.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yun Li
- Department of Respiratory Medicine, The Eighth Medical Center of Pla General Hospital, Beijing, China
| | - Lina Li
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Mingxue Guo
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Chenxi Zou
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Yi Xu
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| | - Zhen Yang
- Department of Respiratory Medicine, The First Medical Center of Chinese Pla General Hospital, Beijing, China
| |
Collapse
|
6
|
An immune cell infiltration-related gene signature predicts prognosis for bladder cancer. Sci Rep 2021; 11:16679. [PMID: 34404901 PMCID: PMC8370985 DOI: 10.1038/s41598-021-96373-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
To explore novel therapeutic targets, develop a gene signature and construct a prognostic nomogram of bladder cancer (BCa). Transcriptome data and clinical traits of BCa were downloaded from UCSC Xena database and Gene Expression Omnibus (GEO) database. We then used the method of Single sample Gene Set Enrichment analysis (ssGSEA) to calculate the infiltration abundances of 24 immune cells in eligible BCa samples. By weighted correlation network analysis (WGCNA), we identified turquoise module with strong and significant association with the infiltration abundance of immune cells which were associated with overall survival of BCa patients. Subsequently, we developed an immune cell infiltration-related gene signature based on the module genes (MGs) and immune-related genes (IRGs) from the Immunology Database and Analysis Portal (ImmPort). Then, we tested the prognostic power and performance of the signature in both discovery and external validation datasets. A nomogram integrated with signature and clinical features were ultimately constructed and tested. Five prognostic immune cell infiltration-related module genes (PIRMGs), namely FPR1, CIITA, KLRC1, TNFRSF6B, and WFIKKN1, were identified and used for gene signature development. And the signature showed independent and stable prognosis predictive power. Ultimately, a nomogram consisting of signature, age and tumor stage was constructed, and it showed good and stable predictive ability on prognosis. Our prognostic signature and nomogram provided prognostic indicators and potential immunotherapeutic targets for BCa. Further researches are needed to verify the clinical effectiveness of this nomogram and these biomarkers.
Collapse
|
7
|
Jin X, Guan Y, Zhang Z, Wang H. Microarray data analysis on gene and miRNA expression to identify biomarkers in non-small cell lung cancer. BMC Cancer 2020; 20:329. [PMID: 32299382 PMCID: PMC7164187 DOI: 10.1186/s12885-020-06829-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/05/2020] [Indexed: 01/22/2023] Open
Abstract
Background The aim of this study was to gain further investigation of non-small cell lung cancer (NSCLC) tumorigenesis and identify biomarkers for clinical management of patients through comprehensive bioinformatics analysis. Methods miRNA and mRNA microarray datasets were downloaded from GEO (Gene Expression Omnibus) database under the accession number GSE102286 and GSE101929, respectively. Genes and miRNAs with differential expression were identified in NSCLC samples compared with controls, respectively. The interaction between differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) was predicted, followed by functional enrichment analysis, and construction of miRNA-gene regulatory network, protein-protein interaction (PPI) network, and competing endogenous RNA (ceRNA) network. Through comprehensive bioinformatics analysis, we anticipate to find novel therapeutic targets and biomarkers for NSCLC. Results A total of 123 DEmiRs (5 up- and 118 down-regulated miRNAs) and 924 DEGs (309 up- and 615 down-regulated genes) were identified. These genes and miRNAs were significantly involved in different pathways including adherens junction, relaxin signaling pathway, and axon guidance. Furthermore, hsa-miR-9-5p, has-miR-196a-5p and hsa-miR-31-5p, as well as hsa-miR-1, hsa-miR-218-5p and hsa-miR-135a-5p were shown to have higher degree in the miRNA-gene regulatory network and ceRNA network, respectively. Furthermore, BIRC5 and FGF2, as well as RTKN2 and SLIT3 were hubs in the PPI network and ceRNA network, respectively. Conclusion Several pathways (adherens junction, relaxin signaling pathway, and axon guidance) miRNAs (hsa-miR-9-5p, has-miR-196a-5p, hsa-miR-31-5p, hsa-miR-1, hsa-miR-218-5p and hsa-miR-135a-5p) and genes (BIRC5, FGF2, RTKN2 and SLIT3) may play important roles in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Respiration, The First Hospital of Jilin University, No. 1 Xinminda Street, Changchun, 130021, China
| | - Yinghui Guan
- Department of Respiration, The First Hospital of Jilin University, No. 1 Xinminda Street, Changchun, 130021, China.
| | - Zhen Zhang
- PICU, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
8
|
Abstract
Purpose The present study aimed to investigate the role of FPR1 and the downstream effectors such as NF-κB and IL-6/8 in the development of cervical cancer. Patients and methods FPR1 protein expression was detected via immunohistochemical staining in tissue microarrays containing cervical cancer tissues from 185 patients. Following FPR1 silencing in SiHa cells using lentiviral siRNA delivery, biological characteristics and tumor formation were evaluated in vitro and in vivo, respectively. Phosphorylated NF-κB levels were detected by Western blotting, while IL-6 and IL-8 secretion were detected by ELISA in both FPR1 knockdown and control SiHa cells. Human umbilical vein endothelial cell tube formation assays were performed to evaluate the angiogenesis-promoting ability of IL-6 and IL-8 secretion in FPR1 knockdown and control SiHa cells. Neovascularization, proliferation and apoptosis markers were detected by immunohistochemical staining to analyze the tumorigenic role of FPR1. Results Immunohistochemistry of cervical cancer tissues from 185 patients revealed high FPR1 expression levels in patients with advanced-stage disease and/or poor prognosis. Compared with control cells, cervical cancer cells in which FPR1 was silenced exhibited inhibition of cell invasion, migration and proliferation and higher levels of apoptosis. NF-κB was inhibited in FPR1 knockdown in SiHa cells. IL-6/8 upregulation by FPR1 activation stimulated angiogenesis. FPR1 deficiency inhibited the tumorigenicity of cervical cancer cells in nude mice. FPR1, IL-6, IL-8, CD31 and Ki67 levels were all reduced, whereas cleaved caspase-3 was upregulated, in the FPR1 knockdown group compared with the levels in the control group. Conclusion High FPR1 expression was associated with advanced stage and poor prognosis in cervical cancer patients. FPR1 activation induced NF-κB nuclear translocation to promote cervical cancer development through the upregulation of IL-6 and IL-8 expression. Inhibiting FPR1 activity may thus have potential therapeutic value in cervical cancer patients.
Collapse
Affiliation(s)
- Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China,
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China,
| |
Collapse
|
9
|
Jiang H, Li FR, Li W, Lu X, Ling K. Multiplexed determination of intracellular messenger RNA by using a graphene oxide nanoprobe modified with target-recognizing fluorescent oligonucleotides. Mikrochim Acta 2018; 185:552. [PMID: 30443680 DOI: 10.1007/s00604-018-3090-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 02/05/2023]
Abstract
A multiplexed graphene oxide (GO) fluorescent nanoprobe is described for quantification and imaging of messenger RNAs (mRNAs) in living cells. The recognizing oligonucleotides (with sequences complementary to those of target mRNAs) were labeled with different fluorescent dyes. If adsorbed on GO, the fluorescence of the recognizing oligonucleotides is quenched. After having penetrated living cells, the oligonucleotides bind to target mRNAs and dissociate from GO. This leads to the recovery of fluorescence. Using different fluorescent dyes, various intracellular mRNAs can be simultaneously imaged and quantified by a high content analysis within a short period of time. Actin mRNA acts as the internal control. This GO-based nanoprobe allows mRNA mimics to be determined within an analytical range from 1 to 400 nM and a detection limit as low as 0.26 nM. Up to 3 intracellular mRNAs (C-myc, TK1, and actin) can be detected simultaneously in a single living cell. Hence, this nanoprobe enables specific distinction of intracellular mRNA expression levels in cancerous and normal cells. It can be potentially applied as a tool for detection of cancer progression and diagnosis. Graphical abstract A multiplexed graphene oxide (GO)-based fluorescent nanoprobe is described for quantification and imaging of intracellular messenger RNAs. After penetrating living cells, the recovered fluorescence of the dissociated recognizing oligonucleotides can be analyzed , and this allows for simultaneous detection of up to 3 intracellular messenger RNAs.
Collapse
Affiliation(s)
- Hongyan Jiang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wei Li
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China
| | - Xiaodong Lu
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Shandong, 266003, China
| | - Kai Ling
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, China.
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China.
| |
Collapse
|
10
|
Xiao M, Feng Y, Cao G, Liu C, Zhang Z. A novel MtHSP70-FPR1 fusion protein enhances cytotoxic T lymphocyte responses to cervical cancer cells by activating human monocyte-derived dendritic cells via the p38 MAPK signaling pathway. Biochem Biophys Res Commun 2018; 503:2108-2116. [PMID: 30098789 DOI: 10.1016/j.bbrc.2018.07.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the potential effects of recombinant mycobacterium tuberculosis heat shock protein 70-formyl peptide receptor 1 (MtHSP70-FPR1) fusion protein on human monocyte-derived dendritic cell (moDC) maturation; cytotoxic T lymphocyte (CTL) responses to cervical cancer (CC) cells; and the roles of the p38 MAPK, ERK, and JNK pathways in its transition. METHODS Monocytes were positively selected with a MACS column with antiCD14 antibody-conjugated microbeads from umbilical cord blood. MoDCs were stimulated with MtHSP70-FPR1, MtHSP70, a mix of MtHSP70 and FPR1, FPR1, or phosphate buffer solution (PBS) as control. Flow cytometry was used to analyze the surface molecule expression of moDCs and IFN-γ-producing CD8+ T cells. T cell proliferation was assessed using [3][H]-thymidine assays. The cytotoxicity of moDC-activated T cells against CC cells was evaluated by MTT assays. Cytokine production was determined by enzyme-linked immunosorbent assay. Western blotting was used to investigate protein expression. RESULTS Compared with MtHSP70, MtHSP70 + FPR1, FPR1, or PBS-mediated moDCs, MtHSP70-FPR1-pulsed moDCs expressed higher levels of CD80, CD86, CD83, HLA-DR, and CCR7; secreted more IL-12p70, TNF-ɑ and IL-1β; and elicited stronger CTL priming and proliferation, resulting in an effective, HLA-I-dependent killing effect on CC cells. The p38 MAPK, ERK, and JNK pathways were all activated in MtHSP70-FPR1-mediated moDC maturation, but the p38 MAPK pathway played a vital role. CONCLUSIONS The excellent capability of MtHSP70-FPR1 fusion protein to induce phenotypical and functional maturation of moDCs and CC-specific CTL responses partly illustrates the potential clinical benefits of DC-based immunotherapy for CC.
Collapse
Affiliation(s)
- Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, China
| | - Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, China.
| |
Collapse
|
11
|
Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur J Pharmacol 2018; 833:339-348. [PMID: 29935171 DOI: 10.1016/j.ejphar.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The formyl peptide receptors (FPRs) are G protein coupled receptors that recognize a broad range of structurally distinct pathogen and danger-associated molecular patterns and mediate host defense to infection and tissue injury. It became evident that the cellular distribution and biological functions of FPRs extend beyond myeloid cells and governing their activation and trafficking. In recent years, significant progress has been made to position FPRs at check points that control the resolution of inflammation, tissue repair and return to homeostasis. Accumulating data indicate a role for FPRs in an ever-increasing range of human diseases, including atherosclerosis, chronic obstructive pulmonary disease, asthma, autoimmune diseases and cancer, in which dysregulated or defective resolution are increasingly recognized as critical component of the pathogenesis. This review summarizes recent advances on how FPRs recognize distinct ligands and integrate opposing cues to govern various responses and will discuss how this knowledge could be harnessed for developing novel therapeutic strategies to counter inflammation that underlies many human diseases.
Collapse
|