1
|
Sridhar A, More AS, Jadhav AR, Patil K, Mavlankar A, Dixit VM, Bapat SA. Pattern recognition in the landscape of seemingly random chimeric transcripts. Comput Struct Biotechnol J 2023; 21:5153-5164. [PMID: 37920814 PMCID: PMC10618115 DOI: 10.1016/j.csbj.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The molecular and functional diversity generated by chimeric transcripts (CTs) that are derived from two genes is indicated to contribute to tumor cell survival. Several gaps yet exist. The present research is a systematic study of the spectrum of CTs identified in RNA sequencing datasets of 160 ovarian cancer samples in the The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov). Structural annotation revealed complexities emerging from chromosomal localization of partner genes, differential splicing and inclusion of regulatory, untranslated regions. Identification of phenotype-specific associations further resolved a dynamically modulated mesenchymal signature during transformation. On an evolutionary background, protein-coding CTs were indicated to be highly conserved, while non-coding CTs may have evolved more recently. We also realized that the current premise postulating structural alterations or neighbouring gene readthrough generating CTs is not valid in instances wherein the parental genes are genomically distanced. In addressing this lacuna, we identified the essentiality of specific spatiotemporal arrangements mediated gene proximities in 3D space for the generation of CTs. All these features together suggest non-random mechanisms towards increasing the molecular diversity in a cell through chimera formation either in parallel or with cross-talks with the indigenous regulatory network.
Collapse
Affiliation(s)
- Aksheetha Sridhar
- Open Health Systems Laboratory, 9601 Medical Centre Drive, Rockville, MD 20850, US
| | - Ankita S. More
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Amruta R. Jadhav
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Komal Patil
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Anuj Mavlankar
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Vaishnavi M. Dixit
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - Sharmila A. Bapat
- Open Health Systems Laboratory, 9601 Medical Centre Drive, Rockville, MD 20850, US
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| |
Collapse
|
2
|
Velatooru LR, Hu CH, Bijani P, Wang X, Bojaxhi P, Chen H, Duvic M, Ni X. New JAK3-INSL3 Fusion Transcript-An Oncogenic Event in Cutaneous T-Cell Lymphoma. Cells 2023; 12:2381. [PMID: 37830594 PMCID: PMC10572011 DOI: 10.3390/cells12192381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Constitutively activated tyrosine kinase JAK3 is implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCL). The mechanisms of constitutive JAK3 activation are unknown although a JAK3 mutation was reported in a small portion of CTCL patients. In this study, we assessed the oncogenic roles of a newly identified JAK3-INSL3 fusion transcript in CTCL. Total RNA from malignant T-cells in 33 patients with Sézary syndrome (SS), a leukemic form of CTCL, was examined for the new JAK3-INSL3 fusion transcript by RT-PCR followed by Sanger sequencing. The expression levels were assessed by qPCR and correlated with patient survivals. Knockdown and/or knockout assays were conducted in two CTCL cell lines (MJ cells and HH cells) by RNA interference and/or CRISPR/Cas9 gene editing. SS patients expressed heterogeneous levels of a new JAK3-INSL3 fusion transcript. Patients with high-level expression of JAK3-INSL3 showed poorer 5-year survival (n = 19, 42.1%) than patients with low-level expression (n = 14, 78.6%). CTCL cells transduced with specific shRNAs or sgRNAs had decreased new JAK3-INSL3 fusion transcript expression, reduced cell proliferation, and decreased colony formation. In NSG xenograft mice, smaller tumor sizes were observed in MJ cells transduced with specific shRNAs than cells transduced with controls. Our results suggest that the newly identified JAK3-INSL3 fusion transcript confers an oncogenic event in CTCL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao Ni
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.R.V.); (C.H.H.); (P.B.); (X.W.); (P.B.); (H.C.); (M.D.)
| |
Collapse
|
3
|
Stružinská I, Hájková N, Hojný J, Krkavcová E, Michálková R, Dvořák J, Němejcová K, Matěj R, Laco J, Drozenová J, Fabian P, Hausnerová J, Méhes G, Škapa P, Švajdler M, Cibula D, Frühauf F, Bártů MK, Dundr P. A comprehensive molecular analysis of 113 primary ovarian clear cell carcinomas reveals common therapeutically significant aberrations. Diagn Pathol 2023; 18:72. [PMID: 37303048 DOI: 10.1186/s13000-023-01358-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Molecular aberrations occurring in primary ovarian clear cell carcinoma (OCCC) can be of diagnostic, predictive, and prognostic significance. However, a complex molecular study including genomic and transcriptomic analysis of large number of OCCC has been lacking. METHODS 113 pathologically confirmed primary OCCCs were analyzed using capture DNA NGS (100 cases; 727 solid cancer related genes) and RNA-Seq (105 cases; 147 genes) in order to describe spectra and frequency of genomic and transcriptomic alterations, as well as their prognostic and predictive significance. RESULTS The most frequent mutations were detected in genes ARID1A, PIK3CA, TERTp, KRAS, TP53, ATM, PPP2R1A, NF1, PTEN, and POLE (51,47,27,18,13,10,7,6,6, and 4%, respectively). TMB-High cases were detected in 9% of cases. Cases with POLEmut and/or MSI-High had better relapse-free survival. RNA-Seq revealed gene fusions in 14/105 (13%) cases, and heterogeneous expression pattern. The majority of gene fusions affected tyrosine kinase receptors (6/14; four of those were MET fusions) or DNA repair genes (2/14). Based on the mRNA expression pattern, a cluster of 12 OCCCs characterized by overexpression of tyrosine kinase receptors (TKRs) AKT3, CTNNB1, DDR2, JAK2, KIT, or PDGFRA (p < 0.00001) was identified. CONCLUSIONS The current work has elucidated the complex genomic and transcriptomic molecular hallmarks of primary OCCCs. Our results confirmed the favorable outcomes of POLEmut and MSI-High OCCC. Moreover, the molecular landscape of OCCC revealed several potential therapeutical targets. Molecular testing can provide the potential for targeted therapy in patients with recurrent or metastatic tumors.
Collapse
Affiliation(s)
- Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague 2, 12800, Czech Republic.
| | - Nikola Hájková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Krkavcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Dvořák
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Pathology, Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, 3rd, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Faculty of Medicine in Hradec Kralove, Charles University, University Hospital Hradec Kralove, Prague, Czech Republic
| | - Jana Drozenová
- Department of Pathology, Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, 3rd, Czech Republic
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Petr Škapa
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine, Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Filip Frühauf
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, Prague 2, 12800, Czech Republic.
| |
Collapse
|
4
|
Feng J, Li Y, Zhang J, Zhang M, Zhang X, Shahzad K, Guo L, Qi T, Tang H, Wang H, Qiao X, Lin Z, Xing C, Wu J. Transcript Complexity and New Insights of Restorer Line in CMS-D8 Cotton Through Full-Length Transcriptomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:930131. [PMID: 35800603 PMCID: PMC9253813 DOI: 10.3389/fpls.2022.930131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Hybrid utilization has proficiently increased crop production worldwide. The cytoplasmic male sterility (CMS) system has emerged as an efficient tool for commercial hybrid cotton seed production. The restorer line with dominant Rf2 gene can restore the fertility of the CMS-D8 sterile line. However, the molecular mechanism of fertility restoration remains unclear in CMS-D8 cotton that limits wider utilization of three-line hybrid breeding. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to understand fertility restoration mechanism of CMS-D8 cotton. In total, 228,106 full-length non-chimeric transcriptome sequences were obtained from anthers of developing flowering buds. The analysis results identified 3,174 novel isoforms, 2,597 novel gene loci, 652 long non-coding RNAs predicted from novel isoforms, 7,234 alternative splicing events, 114 fusion transcripts, and 1,667 genes with alternative polyadenylation. Specially, two novel genes associated with restoration function, Ghir_D05.742.1 and m64033_190821_201011/21103726/ccs were identified and showed significant higher levels of expression in restorer line than sterile and maintainer lines. Our comparative full-length transcriptome analysis provides new insights into the molecular function of Rf2 fertility restorer gene. The results of this study offer a platform for fertility restoration candidate gene discovery in CMS-D8 cotton.
Collapse
Affiliation(s)
- Juanjuan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
5
|
Zhou Y, El-Bahrawy M. Gene fusions in tumourigenesis with particular reference to ovarian cancer. J Med Genet 2021; 58:789-795. [PMID: 34462289 DOI: 10.1136/jmedgenet-2021-108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
Gene fusion, a genomic event that generates a novel gene from two independent genes, has long been known to be implicated in tumourigenesis and cancer progression. It has thus served as a diagnostic and prognostic biomarker in cancer, as well as an ideal therapeutic target in cancer therapy. Gene fusion can arise from chromosomal rearrangement and alternative splicing of transcripts, resulting in deregulation of proto-oncogenes or creation of an oncogenic novel gene. Largely facilitated by next generation sequencing technologies, a plethora of novel gene fusions have been identified in a variety of cancers, which leaves us the challenge of functionally characterising these candidate gene fusions. In this review, we summarise the molecular mechanisms, the oncogenic consequences and the therapeutic implications of verified gene fusions. We also discuss recent studies on gene fusions in both common and rare subtypes of ovarian tumours and how these findings can be translated to cancer therapies to benefit patients carrying these gene fusions.
Collapse
Affiliation(s)
- Yi Zhou
- Surgery and Cancer, Imperial College London, London, UK
| | - Mona El-Bahrawy
- Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Pathology, Alexandria University Faculty of Medicine, Alexandria, Egypt
| |
Collapse
|
6
|
Lu B, Jiang R, Xie B, Wu W, Zhao Y. Fusion genes in gynecologic tumors: the occurrence, molecular mechanism and prospect for therapy. Cell Death Dis 2021; 12:783. [PMID: 34381020 PMCID: PMC8357806 DOI: 10.1038/s41419-021-04065-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Gene fusions are thought to be driver mutations in multiple cancers and are an important factor for poor patient prognosis. Most of them appear in specific cancers, thus satisfactory strategies can be developed for the precise treatment of these types of cancer. Currently, there are few targeted drugs to treat gynecologic tumors, and patients with gynecologic cancer often have a poor prognosis because of tumor progression or recurrence. With the application of massively parallel sequencing, a large number of fusion genes have been discovered in gynecologic tumors, and some fusions have been confirmed to be involved in the biological process of tumor progression. To this end, the present article reviews the current research status of all confirmed fusion genes in gynecologic tumors, including their rearrangement mechanism and frequency in ovarian cancer, endometrial cancer, endometrial stromal sarcoma, and other types of uterine tumors. We also describe the mechanisms by which fusion genes are generated and their oncogenic mechanism. Finally, we discuss the prospect of fusion genes as therapeutic targets in gynecologic tumors.
Collapse
Affiliation(s)
- Bingfeng Lu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruqi Jiang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bumin Xie
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wu Wu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Tomás-Velázquez A, Surrey LF, Miele E, Li MM, Alaggio R, Goitz RJ, Reyes-Múgica M, Salgado CM. Mesenchymal PLAG1 Tumor With PCMTD1-PLAG1 Fusion in an Infant: A New Type of "Plagoma". Am J Dermatopathol 2021; 44:54-57. [PMID: 34291746 DOI: 10.1097/dad.0000000000001978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT In the past decade, there have been major advances in knowledge related to mesenchymal tumors, and new genetic alterations are being delineated. We report a mesenchymal spindle cell neoplasm harboring a novel gene fusion in an infant. Histopathologically, the neoplasm shared some features with sclerosing perineurioma, but immunohistochemically, EMA was negative, whereas GLUT1, NK1-C3, and BCOR were positive. Next-generation sequencing revealed a PCMTD1-pleomorphic adenoma gene 1 (PLAG1) fusion. PLAG1 contributes to the expression of a variety of genes implicated in regulating cell proliferation, and PCMTD1 has been related to the development of certain carcinomas. Recently, other soft tissue tumors in young children associated with PLAG1 fusion variants have been reported. Perhaps, mesenchymal neoplasms presenting PLAG1 fusions with different genes would confirm a specific group (PLAG mesenchymal tumours or "plagomas") in the near future.
Collapse
Affiliation(s)
- Alejandra Tomás-Velázquez
- Department of Dermatology, University Clinic of Navarra, School of Medicine, University of Navarra, Pamplona, Spain; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Roma, Italy; Department of Pathology, Ospedale Bambino Gesù, Roma, Italy; Orthopedic Division, University of Pittsburgh Medical Center, Pittsburgh, PA; and Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hsien Lai S, Zervoudakis G, Chou J, Gurney ME, Quesnelle KM. PDE4 subtypes in cancer. Oncogene 2020; 39:3791-3802. [PMID: 32203163 PMCID: PMC7444459 DOI: 10.1038/s41388-020-1258-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDE) break down cyclic nucleotides such as cAMP and cGMP, reducing the signaling of these important intracellular second messengers. Several unique families of phosphodiesterases exist, and certain families are clinically important modulators of vasodilation. In the current work, we have summarized the body of literature that describes an emerging role for the PDE4 subfamily of phosphodiesterases in malignancy. We have systematically investigated PDE4A, PDE4B, PDE4C, and PDE4D isoforms and found evidence associating them with several cancer types including hematologic malignancies and lung cancers, among others. In this review, we compare the evidence examining the functional role of each PDE4 subtype across malignancies, looking for common signaling themes, signaling pathways, and establishing the case for PDE4 subtypes as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Samuel Hsien Lai
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Guston Zervoudakis
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Jesse Chou
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | | | - Kelly M Quesnelle
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| |
Collapse
|