1
|
Zhang HY, Minnis C, Gustavsson E, Ryten M, Mole SE. CLN3 transcript complexity revealed by long-read RNA sequencing analysis. BMC Med Genomics 2024; 17:244. [PMID: 39367445 PMCID: PMC11451007 DOI: 10.1186/s12920-024-02017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Batten disease is a group of rare inherited neurodegenerative diseases. Juvenile CLN3 disease is the most prevalent type, and the most common pathogenic variant shared by most patients is the "1-kb" deletion which removes two internal coding exons (7 and 8) in CLN3. Previously, we identified two transcripts in patient fibroblasts homozygous for the 1-kb deletion: the 'major' and 'minor' transcripts. To understand the full variety of disease transcripts and their role in disease pathogenesis, it is necessary to first investigate CLN3 transcription in "healthy" samples without juvenile CLN3 disease. METHODS We leveraged PacBio long-read RNA sequencing datasets from ENCODE to investigate the full range of CLN3 transcripts across various tissues and cell types in human control samples. Then we sought to validate their existence using data from different sources. RESULTS We found that a readthrough gene affects the quantification and annotation of CLN3. After taking this into account, we detected over 100 novel CLN3 transcripts, with no dominantly expressed CLN3 transcript. The most abundant transcript has median usage of 42.9%. Surprisingly, the known disease-associated 'major' transcripts are detected. Together, they have median usage of 1.5% across 22 samples. Furthermore, we identified 48 CLN3 ORFs, of which 26 are novel. The predominant ORF that encodes the canonical CLN3 protein isoform has median usage of 66.7%, meaning around one-third of CLN3 transcripts encode protein isoforms with different stretches of amino acids. The same ORFs could be found with alternative UTRs. Moreover, we were able to validate the translational potential of certain transcripts using public mass spectrometry data. CONCLUSION Overall, these findings provide valuable insights into the complexity of CLN3 transcription, highlighting the importance of studying both canonical and non-canonical CLN3 protein isoforms as well as the regulatory role of UTRs to fully comprehend the regulation and function(s) of CLN3. This knowledge is essential for investigating the impact of the 1-kb deletion and rare pathogenic variants on CLN3 transcription and disease pathogenesis.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Christopher Minnis
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Emil Gustavsson
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London, WC1E 1EH, UK.
| |
Collapse
|
2
|
Lebedeva A, Veselovsky E, Kavun A, Belova E, Grigoreva T, Orlov P, Subbotovskaya A, Shipunov M, Mashkov O, Bilalov F, Shatalov P, Kaprin A, Shegai P, Diuzhev Z, Migiaev O, Vytnova N, Mileyko V, Ivanov M. Untapped Potential of Poly(ADP-Ribose) Polymerase Inhibitors: Lessons Learned From the Real-World Clinical Homologous Recombination Repair Mutation Testing. World J Oncol 2024; 15:562-578. [PMID: 38993246 PMCID: PMC11236374 DOI: 10.14740/wjon1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024] Open
Abstract
Background Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Orlov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Anna Subbotovskaya
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Maksim Shipunov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Oleg Mashkov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Fanil Bilalov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Peter Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | | | | | - Vladislav Mileyko
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
3
|
Privat M, Ponelle-Chachuat F, Viala S, Uhrhammer N, Lepage M, Cayre A, Bidet Y, Bignon YJ, Gay-Bellile M, Cavaillé M. RNA Panel Sequencing Is an Effective Tool to Help Classify Splice Variants for Clinical Oncogenetic Diagnosis. Hum Mutat 2024; 2024:4830045. [PMID: 40225916 PMCID: PMC11918821 DOI: 10.1155/2024/4830045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/15/2025]
Abstract
Routine gene panel analysis identifies pathogenic variants in clinically relevant genes. However, variants of unknown significance (VUSs) are commonly observed, many of which potentially have an impact on mRNA transcription and splicing. Several software programs attempt to predict the impact of variants on splicing and thus make it possible to select the variants for which it is important to study the effect on the transcripts. Transcript analysis is also necessary to show the tandem character of large duplications, and it can be useful for the search for deep intronic variants that are difficult to identify in a DNA panel. We analyzed 53 variants of unknown significance by targeted sequencing of 48 genes using RNA extracted from patient blood samples. RT-PCR and Sanger sequencing of patient mRNA or minigene monoallelic analysis was also carried out when necessary. For the 53 VUSs, 21 could be classified as likely neutral and 10 as pathogenic or likely pathogenic. Data are comprehensively presented for four variants: PTEN c.206+6T>G, MLH1 c.791-489_791-20del, BRCA2 c.68-8_68-7delinsAA, and MSH2 c.(1076+1_1077-1)_(1276+1_1277-1)dup. These four examples illustrate the usefulness of blood RNA panel sequencing in clinical oncogenetics to help classify VUSs with predicted splice effects. It could also be useful for characterizing large duplications and for detecting deep intronic variants with an impact on expressed transcripts.
Collapse
Affiliation(s)
- Maud Privat
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Flora Ponelle-Chachuat
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Sandrine Viala
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Mathis Lepage
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Anne Cayre
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département de Pathologie, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yannick Bidet
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Mathilde Gay-Bellile
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| | - Mathias Cavaillé
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
4
|
Infante M, Arranz-Ledo M, Lastra E, Olaverri A, Ferreira R, Orozco M, Hernández L, Martínez N, Durán M. Profiling of the genetic features of patients with breast, ovarian, colorectal and extracolonic cancers: Association to CHEK2 and PALB2 germline mutations. Clin Chim Acta 2024; 552:117695. [PMID: 38061684 DOI: 10.1016/j.cca.2023.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AND AIMS Cancer predisposition goes beyond BRCA and DNA Mismatch Repair (MMR) genes since multi-gene panel testing has become the routine diagnostic tool for hereditary cancer suspicion (HCS) cases. CHEK2 and PALB2 are some of the foremost-mutated non-BRCA/MMR actionable genes in families with a significant familial aggregation. Therefore, the purpose of this work is to unravel which tumours other than breast, ovary or colorectal display the patients. MATERIALS AND METHODS We have analysed 528 probands that meet the inclusion criteria for Hereditary Breast and Ovarian Cancer and Lynch Syndrome established by our Hereditary Cancer Regional Program with a customized 35 genes-panel by using Ion Torrent™ Technology. RESULTS We have identified pathogenic variants (PVs) in 61 families (1.55%), of which more than half (31 probands) harboured PVs in CHEK2 and PALB2 genes. Ours results reveal that not only were PVs CHEK2 and PALB2 carriers more likely to have family history of cancer not limited to breast, ovarian or colorectal cancers, but also they are prone to other extracolonic cancers, noteworthy endometrial and gastric cancers. CONCLUSIONS Multigene panel testing improves the chance of finding PVs in actionable genes in families with HCS. In addition, the coexistence of variants should be recorded to implement a polygenic risk algorithm that might explain the missing heritability in the aforementioned families.
Collapse
Affiliation(s)
- Mar Infante
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics , University of Valladolid-Spanish National Research Council (IBGM, UVa-CSIC), C/ Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Mónica Arranz-Ledo
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics , University of Valladolid-Spanish National Research Council (IBGM, UVa-CSIC), C/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Burgos University Hospital, Burgos, Spain
| | - Amaya Olaverri
- Unit of Genetic Counseling in Cancer, Rio Hortega University Hospital, Valladolid, Spain
| | - Raquel Ferreira
- Unit of Genetic Counseling in Cancer, Rio Hortega University Hospital, Valladolid, Spain
| | - Marta Orozco
- Unit of Genetic Counseling in Cancer, Rio Hortega University Hospital, Valladolid, Spain
| | - Lara Hernández
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics , University of Valladolid-Spanish National Research Council (IBGM, UVa-CSIC), C/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Noemí Martínez
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics , University of Valladolid-Spanish National Research Council (IBGM, UVa-CSIC), C/ Sanz y Forés 3, 47003 Valladolid, Spain
| | - Mercedes Durán
- Cancer Genetics Group, Unit of Excellence Institute of Biomedicine and Molecular Genetics , University of Valladolid-Spanish National Research Council (IBGM, UVa-CSIC), C/ Sanz y Forés 3, 47003 Valladolid, Spain
| |
Collapse
|
5
|
Kleiblová P, Černá M, Zemánková P, Matějková K, Nehasil P, Hojný J, Horáčková K, Janatová M, Soukupová J, Šťastná B, Kleibl Z. Parallel DNA/RNA NGS Using an Identical Target Enrichment Panel in the Analysis of Hereditary Cancer Predisposition. Folia Biol (Praha) 2024; 70:62-73. [PMID: 38830124 DOI: 10.14712/fb2024070010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.
Collapse
Affiliation(s)
- Petra Kleiblová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Marta Černá
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemánková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Matějková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Nehasil
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Klára Horáčková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Markéta Janatová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Soukupová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Barbora Šťastná
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Walker LC, Hoya MDL, Wiggins GAR, Lindy A, Vincent LM, Parsons MT, Canson DM, Bis-Brewer D, Cass A, Tchourbanov A, Zimmermann H, Byrne AB, Pesaran T, Karam R, Harrison SM, Spurdle AB. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup. Am J Hum Genet 2023; 110:1046-1067. [PMID: 37352859 PMCID: PMC10357475 DOI: 10.1016/j.ajhg.2023.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1, PS3, PP3, BS3, BP4, and BP7. However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. We utilized empirically derived splicing evidence to (1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, (2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and (3) exemplify methodology to calibrate splice prediction tools. We propose repurposing the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely, BP7 may be used to capture RNA results demonstrating no splicing impact for intronic and synonymous variants. We propose that the PS3/BS3 codes are applied only for well-established assays that measure functional impact not directly captured by RNA-splicing assays. We recommend the application of PS1 based on similarity of predicted RNA-splicing effects for a variant under assessment in comparison with a known pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA-assay evidence described aim to help standardize variant pathogenicity classification processes when interpreting splicing-based evidence.
Collapse
Affiliation(s)
- Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | | | - Michael T Parsons
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daffodil M Canson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | | | | | - Alicia B Byrne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Steven M Harrison
- Ambry Genetics, Aliso Viejo, CA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Walker LC, de la Hoya M, Wiggins GA, Lindy A, Vincent LM, Parsons M, Canson DM, Bis-Brewer D, Cass A, Tchourbanov A, Zimmermann H, Byrne AB, Pesaran T, Karam R, Harrison SM, Spurdle AB. APPLICATION OF THE ACMG/AMP FRAMEWORK TO CAPTURE EVIDENCE RELEVANT TO PREDICTED AND OBSERVED IMPACT ON SPLICING: RECOMMENDATIONS FROM THE CLINGEN SVI SPLICING SUBGROUP. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.24.23286431. [PMID: 36865205 PMCID: PMC9980257 DOI: 10.1101/2023.02.24.23286431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) framework for classifying variants uses six evidence categories related to the splicing potential of variants: PVS1 (null variant in a gene where loss-of-function is the mechanism of disease), PS3 (functional assays show damaging effect on splicing), PP3 (computational evidence supports a splicing effect), BS3 (functional assays show no damaging effect on splicing), BP4 (computational evidence suggests no splicing impact), and BP7 (silent change with no predicted impact on splicing). However, the lack of guidance on how to apply such codes has contributed to variation in the specifications developed by different Clinical Genome Resource (ClinGen) Variant Curation Expert Panels. The ClinGen Sequence Variant Interpretation (SVI) Splicing Subgroup was established to refine recommendations for applying ACMG/AMP codes relating to splicing data and computational predictions. Our study utilised empirically derived splicing evidence to: 1) determine the evidence weighting of splicing-related data and appropriate criteria code selection for general use, 2) outline a process for integrating splicing-related considerations when developing a gene-specific PVS1 decision tree, and 3) exemplify methodology to calibrate bioinformatic splice prediction tools. We propose repurposing of the PVS1_Strength code to capture splicing assay data that provide experimental evidence for variants resulting in RNA transcript(s) with loss of function. Conversely BP7 may be used to capture RNA results demonstrating no impact on splicing for both intronic and synonymous variants, and for missense variants if protein functional impact has been excluded. Furthermore, we propose that the PS3 and BS3 codes are applied only for well-established assays that measure functional impact that is not directly captured by RNA splicing assays. We recommend the application of PS1 based on similarity of predicted RNA splicing effects for a variant under assessment in comparison to a known Pathogenic variant. The recommendations and approaches for consideration and evaluation of RNA assay evidence described aim to help standardise variant pathogenicity classification processes and result in greater consistency when interpreting splicing-based evidence.
Collapse
|
8
|
Dawes R, Bournazos AM, Bryen SJ, Bommireddipalli S, Marchant RG, Joshi H, Cooper ST. SpliceVault predicts the precise nature of variant-associated mis-splicing. Nat Genet 2023; 55:324-332. [PMID: 36747048 PMCID: PMC9925382 DOI: 10.1038/s41588-022-01293-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/15/2022] [Indexed: 02/08/2023]
Abstract
Even for essential splice-site variants that are almost guaranteed to alter mRNA splicing, no current method can reliably predict whether exon-skipping, cryptic activation or multiple events will result, greatly complicating clinical interpretation of pathogenicity. Strikingly, ranking the four most common unannotated splicing events across 335,663 reference RNA-sequencing (RNA-seq) samples (300K-RNA Top-4) predicts the nature of variant-associated mis-splicing with 92% sensitivity. The 300K-RNA Top-4 events correctly identify 96% of exon-skipping events and 86% of cryptic splice sites for 140 clinical cases subject to RNA testing, showing higher sensitivity and positive predictive value than SpliceAI. Notably, RNA re-analyses showed we had missed 300K-RNA Top-4 events for several clinical cases tested before the development of this empirical predictive method. Simply, mis-splicing events that happen around a splice site in RNA-seq data are those most likely to be activated by a splice-site variant. The SpliceVault web portal allows users easy access to 300K-RNA for informed splice-site variant interpretation and classification.
Collapse
Affiliation(s)
- Ruebena Dawes
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia
- The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Adam M Bournazos
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia
- The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Samantha J Bryen
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia
- The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Shobhana Bommireddipalli
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Rhett G Marchant
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia
- The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Himanshu Joshi
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - Sandra T Cooper
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia.
- Discipline of Child and Adolescent Health, Faculty of Health and Medicine, University of Sydney, Sydney, New South Wales, Australia.
- The Children's Medical Research Institute, Sydney, New South Wales, Australia.
| |
Collapse
|
9
|
Horton C, Cass A, Conner BR, Hoang L, Zimmermann H, Abualkheir N, Burks D, Qian D, Molparia B, Vuong H, LaDuca H, Grzybowski J, Durda K, Pilarski R, Profato J, Clayback K, Mahoney M, Schroeder C, Torres-Martinez W, Elliott A, Chao EC, Karam R. Mutational and splicing landscape in a cohort of 43,000 patients tested for hereditary cancer. NPJ Genom Med 2022; 7:49. [PMID: 36008414 PMCID: PMC9411123 DOI: 10.1038/s41525-022-00323-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
DNA germline genetic testing can identify individuals with cancer susceptibility. However, DNA sequencing alone is limited in its detection and classification of mRNA splicing variants, particularly those located far from coding sequences. Here we address the limitations of splicing variant identification and interpretation by pairing DNA and RNA sequencing and describe the mutational and splicing landscape in a clinical cohort of 43,524 individuals undergoing genetic testing for hereditary cancer predisposition.
Collapse
Affiliation(s)
- Carolyn Horton
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | - Ashley Cass
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | - Blair R Conner
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | - Lily Hoang
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | | | | | - David Burks
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | - Dajun Qian
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | | | - Huy Vuong
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | - Holly LaDuca
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | | | - Kate Durda
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA
| | | | | | - Katherine Clayback
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Martin Mahoney
- Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY, 14203, USA
| | - Courtney Schroeder
- Indiana University School of Medicine, 975 W. Walnut Street, IB 130, Indianapolis, IN, 46202, USA
| | - Wilfredo Torres-Martinez
- Indiana University School of Medicine, 975 W. Walnut Street, IB 130, Indianapolis, IN, 46202, USA
| | - Aaron Elliott
- Realm IDx. One Enterprise, Aliso Viejo, CA, 92656, USA
| | - Elizabeth C Chao
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA.,University of California, Irvine, School of Medicine, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Rachid Karam
- Ambry Genetics. One Enterprise, Aliso Viejo, CA, 92656, USA.
| |
Collapse
|
10
|
Effects of Laparoscopic Hyperthermic Perfusion Therapy Combined with Adjuvant Treatment of Compound Yew Capsule on Ovarian Blood Flow Parameters and Immune Function in Patients with Ovarian Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9603492. [PMID: 35873625 PMCID: PMC9300267 DOI: 10.1155/2022/9603492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Objective To determine the effects of laparoscopic hyperthermic perfusion therapy combined with adjuvant compound yew capsules on ovarian blood flow parameters and immune function in patients with ovarian cancer (OC). Methods A total of 90 OC patients enrolled in our hospital between January 2019 and January 2020 were randomly distributed into the control (Con group) and experimental group (Exp group) based on the sealed envelope method. The Con group was administered laparoscopic hyperthermic perfusion therapy. On this basis, the Exp group was subjected to compound yew capsules; the ovarian blood flow parameters and immune function indexes were compared between the two groups. Results The Exp group was reported to perform better than the Con group regarding ovarian blood flow parameters and immune indexes after treatment (p < 0.001). Conclusion Laparoscopic hyperthermic perfusion therapy combined with adjuvant compound yew capsules for patients with OC can substantially improve the clinical indexes and immune function. Furthermore, research and adequate promotion are needed to elicit the evidence beyond preclinical studies to understand the intricacies of its implementation.
Collapse
|
11
|
Dragoš VŠ, Strojnik K, Klančar G, Škerl P, Stegel V, Blatnik A, Banjac M, Krajc M, Novaković S. Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes. Int J Mol Sci 2022; 23:7446. [PMID: 35806449 PMCID: PMC9267136 DOI: 10.3390/ijms23137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.
Collapse
Affiliation(s)
- Vita Šetrajčič Dragoš
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Ksenija Strojnik
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Gašper Klančar
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Petra Škerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Ana Blatnik
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Marta Banjac
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Mateja Krajc
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Minigene Splicing Assays Identify 20 Spliceogenic Variants of the Breast/Ovarian Cancer Susceptibility Gene RAD51C. Cancers (Basel) 2022; 14:cancers14122960. [PMID: 35740625 PMCID: PMC9221245 DOI: 10.3390/cancers14122960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
RAD51C loss-of-function variants are associated with an increased risk of breast and ovarian cancers. Likewise, splicing disruptions are a frequent mechanism of gene inactivation. Taking advantage of a previous splicing-reporter minigene with exons 2-8 (mgR51C_ex2-8), we proceeded to check its impact on the splicing of candidate ClinVar variants. A total of 141 RAD51C variants at the intron/exon boundaries were analyzed with MaxEntScan. Twenty variants were selected and genetically engineered into the wild-type minigene. All the variants disrupted splicing, and 18 induced major splicing anomalies without any trace or minimal amounts (<2.4%) of the minigene full-length (FL) transcript. Twenty-seven transcripts (including the wild-type and r.904A FL transcripts) were identified by fluorescent fragment electrophoresis; of these, 14 were predicted to truncate the RAD51C protein, 3 kept the reading frame, and 8 minor isoforms (1.1−4.7% of the overall expression) could not be characterized. Finally, we performed a tentative interpretation of the variants according to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, classifying 16 variants as likely pathogenic. Minigene assays have been proven as valuable tools for the initial characterization of potential spliceogenic variants. Hence, minigene mgR51C_ex2-8 provided useful splicing data for 40 RAD51C variants.
Collapse
|
13
|
Empirical prediction of variant-activated cryptic splice donors using population-based RNA-Seq data. Nat Commun 2022; 13:1655. [PMID: 35351883 PMCID: PMC8964760 DOI: 10.1038/s41467-022-29271-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Predicting which cryptic-donors may be activated by a splicing variant in patient DNA is notoriously difficult. Through analysis of 5145 cryptic-donors (versus 86,963 decoy-donors not used; any GT or GC), we define an empirical method predicting cryptic-donor activation with 87% sensitivity and 95% specificity. Strength (according to four algorithms) and proximity to the annotated-donor appear important determinants of cryptic-donor activation. However, other factors such as splicing regulatory elements, which are difficult to identify, play an important role and are likely responsible for current prediction inaccuracies. We find that the most frequently recurring natural mis-splicing events at each exon-intron junction, summarised over 40,233 RNA-sequencing samples (40K-RNA), predict with accuracy which cryptic-donor will be activated in rare disease. 40K-RNA provides an accurate, evidence-based method to predict variant-activated cryptic-donors in genetic disorders, assisting pathology consideration of possible consequences of a variant for the encoded protein and RNA diagnostic testing strategies. Genetic variants affecting the consensus splicing motifs can alter binding of spliceosomal components and induce mis-splicing. Here, the authors develop a method, showing that ranking the most common recurring mis-splicing events in public RNA-Seq data can predict the activation of cryptic-donors.
Collapse
|
14
|
Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2022; 10:813457. [PMID: 35300412 PMCID: PMC8921524 DOI: 10.3389/fcell.2022.813457] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is mainly involved in the repair of DNA damage, cell cycle regulation, maintenance of genome stability, and other important physiological processes. Mutations or defects in the BRCA1 gene significantly increase the risk of breast, ovarian, prostate, and other cancers in carriers. In this review, we summarized the molecular functions and regulation of BRCA1 and discussed recent insights into the detection and treatment of BRCA1 mutated breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Pathogenic neurofibromatosis type 1 (NF1) RNA splicing resolved by targeted RNAseq. NPJ Genom Med 2021; 6:95. [PMID: 34782607 PMCID: PMC8593033 DOI: 10.1038/s41525-021-00258-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by loss-of-function variants in the NF1 gene. Approximately 10% of these variants affect RNA splicing and are either missed by conventional DNA diagnostics or are misinterpreted by in silico splicing predictions. Therefore, a targeted RNAseq-based approach was designed to detect pathogenic RNA splicing and associated pathogenic DNA variants. For this method RNA was extracted from lymphocytes, followed by targeted RNAseq. Next, an in-house developed tool (QURNAs) was used to calculate the enrichment score (ERS) for each splicing event. This method was thoroughly tested using two different patient cohorts with known pathogenic splice-variants in NF1. In both cohorts all 56 normal reference transcript exon splice junctions, 24 previously described and 45 novel non-reference splicing events were detected. Additionally, all expected pathogenic splice-variants were detected. Eleven patients with NF1 symptoms were subsequently tested, three of which have a known NF1 DNA variant with a putative effect on RNA splicing. This effect could be confirmed for all 3. The other eight patients were previously without any molecular confirmation of their NF1-diagnosis. A deep-intronic pathogenic splice variant could now be identified for two of them (25%). These results suggest that targeted RNAseq can be successfully used to detect pathogenic RNA splicing variants in NF1.
Collapse
|
16
|
Frederiksen JH, Jensen SB, Tümer Z, Hansen TVO. Classification of MSH6 Variants of Uncertain Significance Using Functional Assays. Int J Mol Sci 2021; 22:ijms22168627. [PMID: 34445333 PMCID: PMC8395337 DOI: 10.3390/ijms22168627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Lynch syndrome (LS) is one of the most common hereditary cancer predisposition syndromes worldwide. Individuals with LS have a high risk of developing colorectal or endometrial cancer, as well as several other cancers. LS is caused by autosomal dominant pathogenic variants in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, PMS2 or MSH6, and typically include truncating variants, such as frameshift, nonsense or splicing variants. However, a significant number of missense, intronic, or silent variants, or small in-frame insertions/deletions, are detected during genetic screening of the MMR genes. The clinical effects of these variants are often more difficult to predict, and a large fraction of these variants are classified as variants of uncertain significance (VUS). It is pivotal for the clinical management of LS patients to have a clear genetic diagnosis, since patients benefit widely from screening, preventive and personal therapeutic measures. Moreover, in families where a pathogenic variant is identified, testing can be offered to family members, where non-carriers can be spared frequent surveillance, while carriers can be included in cancer surveillance programs. It is therefore important to reclassify VUSs, and, in this regard, functional assays can provide insight into the effect of a variant on the protein or mRNA level. Here, we briefly describe the disorders that are related to MMR deficiency, as well as the structure and function of MSH6. Moreover, we review the functional assays that are used to examine VUS identified in MSH6 and discuss the results obtained in relation to the ACMG/AMP PS3/BS3 criterion. We also provide a compiled list of the MSH6 variants examined by these assays. Finally, we provide a future perspective on high-throughput functional analyses with specific emphasis on the MMR genes.
Collapse
Affiliation(s)
- Jane H. Frederiksen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (S.B.J.); (Z.T.)
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
- Correspondence: (J.H.F.); (T.v.O.H.)
| | - Sara B. Jensen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (S.B.J.); (Z.T.)
| | - Zeynep Tümer
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (S.B.J.); (Z.T.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Thomas v. O. Hansen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (S.B.J.); (Z.T.)
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark
- Correspondence: (J.H.F.); (T.v.O.H.)
| |
Collapse
|
17
|
Dragoš VŠ, Stegel V, Blatnik A, Klančar G, Krajc M, Novaković S. New Approach for Detection of Normal Alternative Splicing Events and Aberrant Spliceogenic Transcripts with Long-Range PCR and Deep RNA Sequencing. BIOLOGY 2021; 10:706. [PMID: 34439939 PMCID: PMC8389194 DOI: 10.3390/biology10080706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
RNA sequencing is a promising technique for detecting normal and aberrant RNA isoforms. Here, we present a new single-gene, straightforward 1-day hands-on protocol for detection of splicing alterations with deep RNA sequencing from blood. We have validated our method's accuracy by detecting previously published normal splicing isoforms of STK11 gene. Additionally, the same technique was used to provide the first comprehensive catalogue of naturally occurring alternative splicing events of the NBN gene in blood. Furthermore, we demonstrate that our approach can be used for detection of splicing impairment caused by genetic variants. Therefore, we were able to reclassify three variants of uncertain significance: NBN:c.584G>A, STK11:c.863-5_863-3delCTC and STK11:c.615G>A. Due to the simplicity of our approach, it can be incorporated into any molecular diagnostics laboratory for determination of variant's impact on splicing.
Collapse
Affiliation(s)
- Vita Šetrajčič Dragoš
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (V.S.); (G.K.)
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (V.S.); (G.K.)
| | - Ana Blatnik
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (A.B.); (M.K.)
| | - Gašper Klančar
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (V.S.); (G.K.)
| | - Mateja Krajc
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (A.B.); (M.K.)
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (V.S.); (G.K.)
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
BRCA1 and BRCA2 whole cDNA analysis in unsolved hereditary breast/ovarian cancer patients. Cancer Genet 2021; 258-259:10-17. [PMID: 34237702 DOI: 10.1016/j.cancergen.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
Germline pathogenic variants in BRCA1 and BRCA2 genes (BRCA1/2) explain an important fraction of hereditary breast/ovarian cancer (HBOC) cases. Genetic testing generally involves examining coding regions and exon/intron boundaries, thus the frequency of deleterious variants in non-coding regions is unknown. Here we analysed BRCA1/2 whole cDNA in a large cohort of 320 unsolved high-risk HBOC cases in order to identify potential splicing alterations explained by variants in BRCA1/2 deep intronic regions. Whole RNA splicing profiles were analysed by RT-PCR using Sanger sequencing or high-resolution electrophoresis in a QIAxcel instrument. Known predominant BRCA1/2 alternative splicing events were detected, together with two novel events BRCA1 ▼21 and BRCA2 Δ18q_27p. BRCA2 exon 3 skipping was detected in one patient (male) affected with breast cancer, caused by a known Portuguese founder mutation (c.156_157insAluYa5). An altered BRCA2 splicing pattern was detected in three patients, consisting in the up-regulation of ▼20A, Δ22 and ▼20A+Δ22 transcripts. In silico analysis and semi-quantitative data identified the polymorphism BRCA2 c.8755-66T>C as a potential modifier of Δ22 levels. Our findings suggest that mRNA alterations in BRCA1/2 caused by deep intronic variants are rare in Spanish population. However, RNA analysis complements DNA-based strategies allowing the identification of alterations that could go undetected by conventional testing.
Collapse
|
19
|
Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Lorca V, Gómez-Sanz A, Carvalho S, Allen J, Infante M, Pérez-Segura P, Lázaro C, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers (Basel) 2021; 13:2845. [PMID: 34200360 PMCID: PMC8201001 DOI: 10.3390/cancers13112845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Collapse
Affiliation(s)
- Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Mar Infante
- Cancer Genetics, Unidad de Excelencia Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, 08908 Hospitalet de Llobregat, Spain;
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| |
Collapse
|
20
|
Truty R, Ouyang K, Rojahn S, Garcia S, Colavin A, Hamlington B, Freivogel M, Nussbaum RL, Nykamp K, Aradhya S. Spectrum of splicing variants in disease genes and the ability of RNA analysis to reduce uncertainty in clinical interpretation. Am J Hum Genet 2021; 108:696-708. [PMID: 33743207 PMCID: PMC8059334 DOI: 10.1016/j.ajhg.2021.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
The complexities of gene expression pose challenges for the clinical interpretation of splicing variants. To better understand splicing variants and their contribution to hereditary disease, we evaluated their prevalence, clinical classifications, and associations with diseases, inheritance, and functional characteristics in a 689,321-person clinical cohort and two large public datasets. In the clinical cohort, splicing variants represented 13% of all variants classified as pathogenic (P), likely pathogenic (LP), or variants of uncertain significance (VUSs). Most splicing variants were outside essential splice sites and were classified as VUSs. Among all individuals tested, 5.4% had a splicing VUS. If RNA analysis were to contribute supporting evidence to variant interpretation, we estimated that splicing VUSs would be reclassified in 1.7% of individuals in our cohort. This would result in a clinically significant result (i.e., P/LP) in 0.1% of individuals overall because most reclassifications would change VUSs to likely benign. In ClinVar, splicing VUSs were 4.8% of reported variants and could benefit from RNA analysis. In the Genome Aggregation Database (gnomAD), splicing variants comprised 9.4% of variants in protein-coding genes; most were rare, precluding unambiguous classification as benign. Splicing variants were depleted in genes associated with dominant inheritance and haploinsufficiency, although some genes had rare variants at essential splice sites or had common splicing variants that were most likely compatible with normal gene function. Overall, we describe the contribution of splicing variants to hereditary disease, the potential utility of RNA analysis for reclassifying splicing VUSs, and how natural variation may confound clinical interpretation of splicing variants.
Collapse
Affiliation(s)
| | - Karen Ouyang
- Invitae, 1400 16th St, San Francisco, CA 94103, USA
| | - Susan Rojahn
- Invitae, 1400 16th St, San Francisco, CA 94103, USA
| | - Sarah Garcia
- Invitae, 1400 16th St, San Francisco, CA 94103, USA
| | | | | | | | | | - Keith Nykamp
- Invitae, 1400 16th St, San Francisco, CA 94103, USA
| | | |
Collapse
|
21
|
Sun R, Lü W, Liu Z, Yang Y, Wang X, Zhao X, Fu S, Dai W, Huang C, Diao D. FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis via integrating ChIP-seq and RNA-seq data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:34-45. [PMID: 33610681 DOI: 10.1016/j.pbiomolbio.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
FOXI1 plays a key role in the development of gastric cancer. However, the whole genome FOXI1 binding sites and its target genes are unclear. In the present study, we used ChIP-seq and RNA-seq technologies to identify the target gene of FOXI1. Firstly, ChIP-seq data showed that, 4476 unique peaks in the genome region were captured. Most of these binding peaks are located in introns or intergenic regions. We annotated all the peaks to the nearest gene and identified 404 genes as FOXI1 binding genes. KEGG and GO analysis showed that FOXI1 binding gene to be correlated with the cellular process, cell part, cell, binding, single-organism process. Further, we performed FOXI1-overexpressed RNA-seq experiment. We comprehensively analyzed the ChIP-seq and RNA-seq data and take the intersection of two databases, several genes were identified. ATF3 was selected from the intersection since ATF3 was the most enriched mRNA after FOXI1 overexpressed. ChIP-qPCR and luciferase report gene were used to validate that ATF3 was target gene of FOXI1. Intriguely, ATF3 protein was significantly downregulated after FOXI1 overexpressed. We found FOXI1 can also bind to the promoter of miR-590 and active it which directly target ATF3. The binding site between FOXI1 and miR-590 was verified by ChIP-qPCR and luciferase report gene, and the target relationship between miR-590 and ATF3 was confirmed by dual-luciferase reporter gene. In conclusion, our data identified the genome binding sites of FOXI1, and provide evidence that FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis.
Collapse
Affiliation(s)
- Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Weidong Lü
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Zhigang Liu
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi'an Jiaotong University, 309 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Xinliang Zhao
- Department of General Thoracic Surgery, 521 Ordnance Hospital, 12 Zhangba East Road, Xi'an, Shaanxi, PR China
| | - Shufeng Fu
- Medical College of Xianyang Vocational and Technical College, 1 Tongyi Road, Xi'an, Shaanxi, PR China
| | - Wei Dai
- Department of Emergency, Shaanxi Provincial People's Hospital, 256, Youyi West Road, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| | - Dongmei Diao
- Department of Oncology Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, PR China.
| |
Collapse
|
22
|
Nix P, Mundt E, Coffee B, Goossen E, Warf BM, Brown K, Bowles K, Roa B. Interpretation of BRCA2 Splicing Variants: A Case Series of Challenging Variant Interpretations and the Importance of Functional RNA Analysis. Fam Cancer 2021; 21:7-19. [PMID: 33469799 PMCID: PMC8799590 DOI: 10.1007/s10689-020-00224-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022]
Abstract
A substantial proportion of pathogenic variants associated with an increased risk of hereditary cancer are sequence variants affecting RNA splicing. The classification of these variants can be complex when both non-functional and functional transcripts are produced from the variant allele. We present four BRCA2 splice site variants with complex variant interpretations (BRCA2 c.68-3T>G, c.68-2A>G, c.425G>T, c.8331+2T>C). Evidence supporting a pathogenic classification is available for each variant, including in silico models, absence in population databases, and published functional data. However, comprehensive RNA analysis showed that some functional transcript may be produced by each variant. BRCA2 c.68-3T>G results in a partial splice defect. For BRCA2 c.68-2A>G and c.425G>T, aberrant splicing was shown to produce a potentially functional, in-frame transcript. BRCA2 c.8331+2T>C may utilize a functional GC donor in place of the wild-type GT donor. The severity of cancer history for carriers of these variants was also assessed using a history weighting algorithm and was not consistent with pathogenic controls (carriers of known pathogenic variants in BRCA2). Due to the conflicting evidence, our laboratory classifies these BRCA2 variants as variants of uncertain significance. This highlights the importance of evaluating new and existing evidence to ensure accurate variant classification and appropriate patient care.
Collapse
Affiliation(s)
- Paola Nix
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA.
| | - Erin Mundt
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Bradford Coffee
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | | | - Bryan M Warf
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA.,Third Wave Analytics, Inc., San Francisco, CA, USA
| | - Krystal Brown
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Karla Bowles
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| | - Benjamin Roa
- Myriad Genetics, Inc., 320 Wakara Way, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Kobayashi S, Hiwasa T, Ishige T, Kano M, Hoshino T, Rahmutulla B, Seimiya M, Shimada H, Nomura F, Matsubara H, Matsushita K. Anti-FIRΔexon2 autoantibody as a novel indicator for better overall survival in gastric cancer. Cancer Sci 2021; 112:847-858. [PMID: 33306856 PMCID: PMC7894018 DOI: 10.1111/cas.14767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
There is no clinically available biomarker for efficiently indicating the overall survival or therapy response of gastric cancer (GC). The autoantibodies (Abs) in the sera of anti‐far‐upstream element‐binding protein‐interacting repressor‐lacking exon2 (FIRΔexon2), anti‐sorting nexin 15, and anti‐spermatogenesis and oogenesis–specific basic helix–loop–helix 1 were markedly higher in GC patients than in healthy donors (HDs). These Abs were identified by large‐scale serological identification of antigens by recombinant cDNA expression cloning screenings and their expression levels were evaluated by amplified luminescence proximity homogeneous assay. In particular, compared with age‐matched HDs, the level of anti‐FIRΔexon2 Abs in GC patients was significantly higher (P < .001). The Spearman's rank correlation analysis between anti‐FIRΔexon2 Abs and clinically available tumor markers such as carcinoembryonic antigen (CEA) was statistically insignificant, indicating that FIRΔexon2 Abs is an independent biomarker. We performed receiver‐operating curve analysis to evaluate the anti‐FIRΔexon2 Ab as a candidate biomarker with CEA and carbohydrate antigen 19‐9 (CA19‐9). The overall survival of GC patients with high anti‐FIRΔexon2 Abs titer was significantly favorable (P = .04) than that of GC patients who were below detection level of anti‐FIRΔexon2 Abs. However, clinical stages were not apparently correlated with the levels of anti‐FIRΔexon2 Ab, CEA, and CA19‐9. In conclusion, anti‐FIRΔexon2 Abs detected in GC patients is a potential biomarker for monitoring a better prognosis. Hence, anti‐FIRΔexon2 Abs is a promising biomarker for indicating better overall survival of gastric cancer patients.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan.,Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanori Seimiya
- Department of Medical Technology & Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Chiba, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo, Japan
| | - Fumio Nomura
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
24
|
Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Llovet P, Díez-Gómez B, Caloca MJ, Pérez-Segura P, Fraile-Bethencourt E, Colmena M, Carvalho S, Allen J, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Comprehensive Functional Characterization and Clinical Interpretation of 20 Splice-Site Variants of the RAD51C Gene. Cancers (Basel) 2020; 12:E3771. [PMID: 33333735 PMCID: PMC7765170 DOI: 10.3390/cancers12123771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them, a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%) impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T, c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Patricia Llovet
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - María José Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
- Knight Cancer Research Building, 2720 S Moody Ave, Portland, OR 97201, USA
| | - Marta Colmena
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| |
Collapse
|
25
|
Yamamoto G, Miyabe I, Tanaka K, Kakuta M, Watanabe M, Kawakami S, Ishida H, Akagi K. SVA retrotransposon insertion in exon of MMR genes results in aberrant RNA splicing and causes Lynch syndrome. Eur J Hum Genet 2020; 29:680-686. [PMID: 33293698 DOI: 10.1038/s41431-020-00779-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/10/2022] Open
Abstract
Lynch syndrome is an autosomal dominant hereditary cancer syndrome in which many cancers develop, the main one being colorectal cancer. Germline pathogenic variants in one of four mismatch repair (MMR) genes are known to be causative of this disease. Accurate diagnosis using genetic testing can greatly benefit the health of those affected. Recently, owing to the improvement of sequence techniques, complicated variants affecting the functions of MMR genes were discovered. In this study, we analyzed insertions of a retrotransposon-like sequence in exon 5 of the MSH6 gene and exon 3 of the MSH2 gene found in Japanese families suspected of having Lynch syndrome. Both of these insertions induced aberrant splicing, and these variants were successfully identified by mRNA sequencing or visual observation of mapping results, although a standard DNA-seq analysis pipeline failed to detect them. The insertion sequences were ~2.5 kbp in length and were found to have the structure of an SVA retrotransposon (SVA). One SVA sequence was not present in the hg19 or hg38 reference genome, but was in a Japanese-specific reference sequence (JRGv2). Our study illustrates the difficulties of identifying SVA insertions in disease genes, and that the possibility of polymorphic insertions should be considered when analyzing mobile elements.
Collapse
Affiliation(s)
- Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Izumi Miyabe
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Keisuke Tanaka
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Miho Kakuta
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Motoko Watanabe
- Department of Clinical Genetics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Kiwamu Akagi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan.
| |
Collapse
|
26
|
Le Page C, Amuzu S, Rahimi K, Gotlieb W, Ragoussis J, Tonin PN. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2mutation carriers. Semin Cancer Biol 2020; 77:110-126. [PMID: 32827632 DOI: 10.1016/j.semcancer.2020.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BRCA1 and BRCA2 are multi-functional proteins and key factors for maintaining genomic stability through their roles in DNA double strand break repair by homologous recombination, rescuing stalled or damaged DNA replication forks, and regulation of cell cycle DNA damage checkpoints. Impairment of any of these critical roles results in genomic instability, a phenotypic hallmark of many cancers including breast and epithelial ovarian carcinomas (EOC). Damaging, usually loss of function germline and somatic variants in BRCA1 and BRCA2, are important drivers of the development, progression, and management of high-grade serous tubo-ovarian carcinoma (HGSOC). However, mutations in these genes render patients particularly sensitive to platinum-based chemotherapy, and to the more innovative targeted therapies with poly-(ADP-ribose) polymerase inhibitors (PARPis) that are targeted to BRCA1/BRCA2 mutation carriers. Here, we reviewed the literature on the responsiveness of BRCA1/2-associated HGSOC to platinum-based chemotherapy and PARPis, and propose mechanisms underlying the frequent development of resistance to these therapeutic agents.
Collapse
Affiliation(s)
- Cécile Le Page
- McGill Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| | - Setor Amuzu
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurosh Rahimi
- Department of Pathology du Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Walter Gotlieb
- Laboratory of Gynecologic Oncology, Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Patricia N Tonin
- Departments of Medicine and Human Genetics, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
27
|
Xu Y, Li C, Wang Z, Liu F, Xu Y. Comparison of suspected Lynch syndrome patients carrying BRCA and BRCA-like variants with Lynch syndrome probands: Phenotypic characteristics and pedigree analyses. Mol Genet Genomic Med 2020; 8:e1359. [PMID: 32548945 PMCID: PMC7434599 DOI: 10.1002/mgg3.1359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) patients diagnosed with Lynch syndrome (LS) are recommended genetic testing. Increasing numbers of germline variants involved in homologous recombination have been identified in suspected LS patients. This study compared phenotypic the characteristics of suspected LS patients carrying BRCA and BRCA‐like variants with those of LS patients. Methods Forty‐two patients carrying pathogenic variants of DNA mismatch repair (MMR) genes (MMR group), 9 carrying BRCA variants, and 11 carrying BRCA‐like variants (BRCA/BRCA‐like group) who met LS clinical criteria were enrolled in this study. Clinical characteristics, pedigrees, and survival rates were compared and BRCA variants were analyzed. Results The earliest CRC‐onset age and tumor differentiation were higher in the BRCA/BRCA‐like group than in the MMR group. Metachronous CRCs were more numerous in the MMR group, resulting in a higher progression‐free survival rate in the BRCA/BRCA‐like group. Extra‐colorectal cancers were more frequently observed in the BRCA/BRCA‐like group. BRCA2 and BRCA1 variants were clustered in exons 11 and 4/7, respectively. Conclusion BRCA and BRCA‐like variants in CRC patients with LS showed moderate penetrance. BRCA/BRCA‐like variant carriers had a higher risk for extra‐colorectal cancers. Surveillance of susceptible organs other than the intestine should be performed for probands and affected family members.
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhimin Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Academy of Science & Technology, Shanghai, China
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|