1
|
Marforio TD, Mattioli EJ, Zerbetto F, Calvaresi M. Fullerenes against COVID-19: Repurposing C 60 and C 70 to Clog the Active Site of SARS-CoV-2 Protease. Molecules 2022; 27:1916. [PMID: 35335283 PMCID: PMC8955646 DOI: 10.3390/molecules27061916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/28/2022] Open
Abstract
The persistency of COVID-19 in the world and the continuous rise of its variants demand new treatments to complement vaccines. Computational chemistry can assist in the identification of moieties able to lead to new drugs to fight the disease. Fullerenes and carbon nanomaterials can interact with proteins and are considered promising antiviral agents. Here, we propose the possibility to repurpose fullerenes to clog the active site of the SARS-CoV-2 protease, Mpro. Through the use of docking, molecular dynamics, and energy decomposition techniques, it is shown that C60 has a substantial binding energy to the main protease of the SARS-CoV-2 virus, Mpro, higher than masitinib, a known inhibitor of the protein. Furthermore, we suggest the use of C70 as an innovative scaffold for the inhibition of SARS-CoV-2 Mpro. At odds with masitinib, both C60 and C70 interact more strongly with SARS-CoV-2 Mpro when different protonation states of the catalytic dyad are considered. The binding of fullerenes to Mpro is due to shape complementarity, i.e., vdW interactions, and is aspecific. As such, it is not sensitive to mutations that can eliminate or invert the charges of the amino acids composing the binding pocket. Fullerenic cages should therefore be more effective against the SARS-CoV-2 virus than the available inhibitors such as masinitib, where the electrostatic term plays a crucial role in the binding.
Collapse
Affiliation(s)
- Tainah Dorina Marforio
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| | | | | | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy; (E.J.M.); (F.Z.)
| |
Collapse
|
2
|
Marforio TD, Calza A, Mattioli EJ, Zerbetto F, Calvaresi M. Dissecting the Supramolecular Dispersion of Fullerenes by Proteins/Peptides: Amino Acid Ranking and Driving Forces for Binding to C 60. Int J Mol Sci 2021; 22:ijms222111567. [PMID: 34768997 PMCID: PMC8583719 DOI: 10.3390/ijms222111567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
Molecular dynamics simulations were used to quantitatively investigate the interactions between the twenty proteinogenic amino acids and C60. The conserved amino acid backbone gave a constant energetic interaction ~5.4 kcal mol−1, while the contribution to the binding due to the amino acid side chains was found to be up to ~5 kcal mol−1 for tryptophan but lower, to a point where it was slightly destabilizing, for glutamic acid. The effects of the interplay between van der Waals, hydrophobic, and polar solvation interactions on the various aspects of the binding of the amino acids, which were grouped as aromatic, charged, polar and hydrophobic, are discussed. Although π–π interactions were dominant, surfactant-like and hydrophobic effects were also observed. In the molecular dynamics simulations, the interacting residues displayed a tendency to visit configurations (i.e., regions of the Ramachandran plot) that were absent when C60 was not present. The amino acid backbone assumed a “tepee-like” geometrical structure to maximize interactions with the fullerene cage. Well-defined conformations of the most interactive amino acids (Trp, Arg, Met) side chains were identified upon C60 binding.
Collapse
|
3
|
Di Costanzo L, Geremia S. Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins. Molecules 2020; 25:E3555. [PMID: 32759758 PMCID: PMC7435792 DOI: 10.3390/molecules25153555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of fullerene, carbon-based nanomolecules sparked a wealth of research across biological, medical and material sciences. Understanding the interactions of these materials with biological samples at the atomic level is crucial for improving the applications of nanomolecules and address safety aspects concerning their use in medicine. Protein crystallography provides the interface view between proteins and carbon-based nanomolecules. We review forefront structural studies of nanomolecules interacting with proteins and the mechanism underlying these interactions. We provide a systematic analysis of approaches used to select proteins interacting with carbon-based nanomolecules explored from the worldwide Protein Data Bank (wwPDB) and scientific literature. The analysis of van der Waals interactions from available data provides important aspects of interactions between proteins and nanomolecules with implications on functional consequences. Carbon-based nanomolecules modulate protein surface electrostatic and, by forming ordered clusters, could modify protein quaternary structures. Lessons learned from structural studies are exemplary and will guide new projects for bioimaging tools, tuning of intrinsically disordered proteins, and design assembly of precise hybrid materials.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, 100, 80055 Portici, Italy
| | - Silvano Geremia
- Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
4
|
Di Giosia M, Marforio TD, Cantelli A, Valle F, Zerbetto F, Su Q, Wang H, Calvaresi M. Inhibition of α-chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site. J Colloid Interface Sci 2020; 571:174-184. [DOI: 10.1016/j.jcis.2020.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
|
5
|
Di Giosia M, Genovese D, Cantelli A, Cingolani M, Rampazzo E, Strever G, Tavoni M, Zaccheroni N, Calvaresi M, Prodi L. Synthesis and characterization of a reconstituted myoglobin-chlorin e6 adduct for theranostic applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842461950202x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chlorin e6 (Ce6) and its derivatives are among the most important photosensitizers in photodynamic therapy. Due to their intense fluorescence, chlorins may also be used for diagnostics. However, low solubility in water and high tendency to aggregation restrict their medical use. Here we demonstrate that apo-myoglobin, by reinserting Ce6 in its heme binding pocket, can be used to monomolecularly disperse it. The reconstructed myoglobin-Ce6 adduct presents noticeable changes in the photophysical properties of the chromophore. A red-shift, in particular in the transparency window, can be observed in the absorption and in the emission spectra of the adduct compared to the spectra of the free chlorin in PBS. The adduct presents a higher quantum yield and an increased excited-state lifetime with respect to the free Ce6. The binding of Ce6 to apo-myoglobin determines a decrease of the 1O2 generation but a three-fold increase of peroxides production, determining globally an increase in the performance of Ce6 as a photosensitizer and imaging agent.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Andrea Cantelli
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Matteo Cingolani
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Enrico Rampazzo
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Giulia Strever
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Marta Tavoni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
- CIRI Scienze Della Vita e Tecnologie per la Salute, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
- CIRI Scienze Della Vita e Tecnologie per la Salute, Alma Mater Studiorum — Università Degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
6
|
Noor M, Goswami J, Davis VA. Comparison of Attachment and Antibacterial Activity of Covalent and Noncovalent Lysozyme-Functionalized Single-Walled Carbon Nanotubes. ACS OMEGA 2020; 5:2254-2259. [PMID: 32064386 PMCID: PMC7016910 DOI: 10.1021/acsomega.9b03387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Carbon nanotube-lysozyme (LSZ) conjugates provide an attractive combination of high strength and antimicrobial activity. However, there has not been a direct comparison of the covalent and noncovalent methods for creating them. In this work, single-walled carbon nanotubes (SWNT) were functionalized with LSZ using both noncovalent adsorption and covalent attachment via N-ethyl-N-(3-dimethylamino-propyl) carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. The amount of attached lysozyme, dispersion stability, and antimicrobial activity was compared. In addition, the mechanical properties of LSZ-SWNT in poly(vinyl alcohol) (PVA) composite films were investigated. Dispersions of covalently bound LSZ-SWNT had better dispersion stability. This was attributed to covalent functionalization enabling sustained SWNT dispersion at a lower LSZ/SWNT ratio. The covalently bound LSZ-SWNT also exhibited a lower initial rate of antibacterial response but were active over a longer time scale. Composite films made from LSZ-SWNT maintained similar activity as the corresponding dispersions. However, the noncovalent LSZ-SWNT films were stronger and more hydrolytically stable than those made from covalent LSZ-SWNT.
Collapse
Affiliation(s)
- Matthew
M. Noor
- Department of Chemical Engineering, Auburn University, 212 Ross Hal, Auburn, Alabama 36849, United States
| | - Joyanta Goswami
- Department of Chemical Engineering, Auburn University, 212 Ross Hal, Auburn, Alabama 36849, United States
| | - Virginia A. Davis
- Department of Chemical Engineering, Auburn University, 212 Ross Hal, Auburn, Alabama 36849, United States
| |
Collapse
|
7
|
Di Giosia M, Nicolini F, Ferrazzano L, Soldà A, Valle F, Cantelli A, Marforio TD, Bottoni A, Zerbetto F, Montalti M, Rapino S, Tolomelli A, Calvaresi M. Stable and Biocompatible Monodispersion of C 60 in Water by Peptides. Bioconjug Chem 2019; 30:808-814. [PMID: 30616344 DOI: 10.1021/acs.bioconjchem.8b00916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lack of solubility in water and the formation of aggregates hamper many opportunities for technological exploitation of C60. Here, different peptides were designed and synthesized with the aim of monomolecular dispersion of C60 in water. Phenylalanines were used as recognizing moieties, able to interact with C60 through π-π stacking, while a varying number of glycines were used as spacers, to connect the two terminal phenylalanines. The best performance in the dispersion of C60 was obtained with the FGGGF peptidic nanotweezer at a pH of 12. A full characterization of this adduct was carried out. The peptides disperse C60 in water with high efficiency, and the solutions are stable for months both in pure water and in physiological environments. NMR measurements demonstrated the ability of the peptides to interact with C60. AFM measurements showed that C60 is monodispersed. Electrospray ionization mass spectrometry determined a stoichiometry of C60@(FGGGF)4. Molecular dynamics simulations showed that the peptides assemble around the C60 cage, like a candy in its paper wrapper, creating a supramolecular host able to accept C60 in the cavity. The peptide-wrapped C60 is fully biocompatible and the C60 "dark toxicity" is eliminated. C60@(FGGGF)4 shows visible light-induced reactive oxygen species (ROS) generation at physiological saline concentrations and reduction of the HeLa cell viability in response to visible light irradiation.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Federica Nicolini
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Lucia Ferrazzano
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Alice Soldà
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR , via Gobetti 101 , 40129 Bologna , Italy
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Andrea Bottoni
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Marco Montalti
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Stefania Rapino
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Alessandra Tolomelli
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician" , Alma Mater Studiorum - Università di Bologna , Via Francesco Selmi, 2 - 40126 Bologna , Italy
| |
Collapse
|
8
|
Bologna F, Mattioli EJ, Bottoni A, Zerbetto F, Calvaresi M. Interactions between Endohedral Metallofullerenes and Proteins: The Gd@C 60-Lysozyme Model. ACS OMEGA 2018; 3:13782-13789. [PMID: 31458078 PMCID: PMC6644377 DOI: 10.1021/acsomega.8b01888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
Endohedral metallofullerenes (EMFs) have great potential as radioisotope carriers for nuclear medicine and as contrast agents for X-ray and magnetic resonance imaging. EMFs have still important restrictions for their use due to low solubility in physiological environments, low biocompatibility, nonspecific cellular uptake, and a strong dependence of their peculiar properties on physiological parameters, such as pH and salt content. Conjugation of the EMFs with proteins can overcome many of these limitations. Here we investigated the thermodynamics of binding of a model EMF (Gd@C60) with a protein (lysozyme) that is known to act as a host for the empty fullerene. As a rule, even if the shape of an EMF is exactly the same as that of the related fullerene, the interactions with a protein are significantly different. The estimated interaction energy (ΔG binding) between Gd@C60 and lysozyme is -18.7 kcal mol-1, suggesting the possibility of using proteins as supramolecular carriers for EMFs. π-π stacking, hydrophobic interactions, surfactant-like interactions, and electrostatic interactions govern the formation of the hybrid between Gd@C60 and lysozyme. The comparison of the energy contributions to the binding between C60 or Gd@C60 and lysozyme suggests that, although shape complementarity remains the driving force of the binding, the presence of electron transfer from the gadolinium atom to the carbon cage induces a charge distribution on the fullerene cage that strongly affects its interaction with the protein.
Collapse
Affiliation(s)
- Fabio Bologna
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Edoardo Jun Mattioli
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo
Ciamician”, Alma Mater Studiorum—Università
di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
9
|
Di Giosia M, Bomans PHH, Bottoni A, Cantelli A, Falini G, Franchi P, Guarracino G, Friedrich H, Lucarini M, Paolucci F, Rapino S, Sommerdijk NAJM, Soldà A, Valle F, Zerbetto F, Calvaresi M. Proteins as supramolecular hosts for C 60: a true solution of C 60 in water. NANOSCALE 2018; 10:9908-9916. [PMID: 29790558 DOI: 10.1039/c8nr02220h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hybrid systems have great potential for a wide range of applications in chemistry, physics and materials science. Conjugation of a biosystem to a molecular material can tune the properties of the components or give rise to new properties. As a workhorse, here we take a C60@lysozyme hybrid. We show that lysozyme recognizes and disperses fullerene in water. AFM, cryo-TEM and high resolution X-ray powder diffraction show that the C60 dispersion is monomolecular. The adduct is biocompatible, stable in physiological and technologically-relevant environments, and easy to store. Hybridization with lysozyme preserves the electrochemical properties of C60. EPR spin-trapping experiments show that the C60@lysozyme hybrid produces ROS following both type I and type II mechanisms. Due to the shielding effect of proteins, the adduct generates significant amounts of 1O2 also in aqueous solution. In the case of type I mechanism, the protein residues provide electrons and the hybrid does not require addition of external electron donors. The preparation process and the properties of C60@lysozyme are general and can be expected to be similar to other C60@protein systems. It is envisaged that the properties of the C60@protein hybrids will pave the way for a host of applications in nanomedicine, nanotechnology, and photocatalysis.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Di Giosia M, Valle F, Cantelli A, Bottoni A, Zerbetto F, Calvaresi M. C 60 Bioconjugation with Proteins: Towards a Palette of Carriers for All pH Ranges. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E691. [PMID: 29702620 PMCID: PMC5978068 DOI: 10.3390/ma11050691] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022]
Abstract
The high hydrophobicity of fullerenes and the resulting formation of aggregates in aqueous solutions hamper the possibility of their exploitation in many technological applications. Noncovalent bioconjugation of fullerenes with proteins is an emerging approach for their dispersion in aqueous media. Contrary to covalent functionalization, bioconjugation preserves the physicochemical properties of the carbon nanostructure. The unique photophysical and photochemical properties of fullerenes are then fully accessible for applications in nanomedicine, sensoristic, biocatalysis and materials science fields. However, proteins are not universal carriers. Their stability depends on the biological conditions for which they have evolved. Here we present two model systems based on pepsin and trypsin. These proteins have opposite net charge at physiological pH. They recognize and disperse C60 in water. UV-Vis spectroscopy, zeta-potential and atomic force microscopy analysis demonstrates that the hybrids are well dispersed and stable in a wide range of pH’s and ionic strengths. A previously validated modelling approach identifies the protein-binding pocket involved in the interaction with C60. Computational predictions, combined with experimental investigations, provide powerful tools to design tailor-made C60@proteins bioconjugates for specific applications.
Collapse
Affiliation(s)
- Matteo Di Giosia
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Consiglio Nazionale delle Ricerche, via P. Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Andrea Bottoni
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Francesco Zerbetto
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Liu Y, Yan B, Winkler DA, Fu J, Zhang A. Competitive Inhibition Mechanism of Acetylcholinesterase without Catalytic Active Site Interaction: Study on Functionalized C 60 Nanoparticles via in Vitro and in Silico Assays. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18626-18638. [PMID: 28492309 DOI: 10.1021/acsami.7b05459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acetylcholinesterase (AChE) activity regulation by chemical agents or, potentially, nanomaterials is important for both toxicology and pharmacology. Competitive inhibition via direct catalytic active sites (CAS) binding or noncompetitive inhibition through interference with substrate and product entering and exiting has been recognized previously as an AChE-inhibition mechanism for bespoke nanomaterials. The competitive inhibition by peripheral anionic site (PAS) interaction without CAS binding remains unexplored. Here, we proposed and verified the occurrence of a presumed competitive inhibition of AChE without CAS binding for hydrophobically functionalized C60 nanoparticles (NPs) by employing both experimental and computational methods. The kinetic inhibition analysis distinguished six competitive inhibitors, probably targeting the PAS, from the pristine and hydrophilically modified C60 NPs. A simple quantitative nanostructure-activity relationship (QNAR) model relating the pocket accessible length of substituent to inhibition capacity was then established to reveal how the geometry of the surface group decides the NP difference in AChE inhibition. Molecular docking identified the PAS as the potential binding site interacting with the NPs via a T-shaped plug-in mode. Specifically, the fullerene core covered the enzyme gorge as a lid through π-π stacking with Tyr72 and Trp286 in the PAS, while the hydrophobic ligands on the fullerene surface inserted into the AChE active site to provide further stability for the complexes. The modeling predicted that inhibition would be severely compromised by Tyr72 and Trp286 deletions, and the subsequent site-directed mutagenesis experiments proved this prediction. Our results demonstrate AChE competitive inhibition of NPs without CAS participation to gain further understanding of both the neurotoxicity and the curative effect of NPs.
Collapse
Affiliation(s)
- Yanyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100190, China
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University , Guangzhou 510632, China
| | - David A Winkler
- CSIRO Manufacturing , Clayton 3168, Australia
- Monash Institute of Pharmaceutical Sciences , Parkville 3052, Australia
- Latrobe Institute for Molecular Science , Bundoora, 3046, Australia
- School of Chemical and Physical Science, Flinders University , Bedford Park 5042, Australia
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100190, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
12
|
Soldà A, Cantelli A, Di Giosia M, Montalti M, Zerbetto F, Rapino S, Calvaresi M. C60@lysozyme: a new photosensitizing agent for photodynamic therapy. J Mater Chem B 2017; 5:6608-6615. [DOI: 10.1039/c7tb00800g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C60@lysozyme showed significant visible light-induced singlet oxygen generation in a physiological environment, indicating the potential of this hybrid as an agent for photodynamic therapy.
Collapse
Affiliation(s)
- A. Soldà
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum – Università di Bologna
- 40126 Bologna
- Italy
| | - A. Cantelli
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum – Università di Bologna
- 40126 Bologna
- Italy
| | - M. Di Giosia
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum – Università di Bologna
- 40126 Bologna
- Italy
| | - M. Montalti
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum – Università di Bologna
- 40126 Bologna
- Italy
| | - F. Zerbetto
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum – Università di Bologna
- 40126 Bologna
- Italy
| | - S. Rapino
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum – Università di Bologna
- 40126 Bologna
- Italy
| | - M. Calvaresi
- Dipartimento di Chimica “G. Ciamician”
- Alma Mater Studiorum – Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|