1
|
Breheny C, Colbert DM, Bezerra G, Geever J, Geever LM. Towards Sustainable Food Packaging: Mechanical Recycling Effects on Thermochromic Polymers Performance. Polymers (Basel) 2025; 17:1042. [PMID: 40284305 PMCID: PMC12030586 DOI: 10.3390/polym17081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Integrating thermochromic pigments (TPs) into food packaging offers significant benefits for monitoring temperature variations, improving food safety, and reducing waste. However, the recyclability of such materials remains underexplored, particularly regarding the retention of their optical and mechanical properties after repeated recycling. Addressing this gap, this research aims to evaluate how mechanical recycling affects key properties of polypropylene (PP) blends containing varying TP concentrations. Three formulations, PP100/TP0 (0% TP), PP98/TP2 (2% TP), and PP92/TP8 (8% TP), were subjected to five recycling cycles, with changes in thermal stability, color transition behavior, mechanical integrity, and surface morphology analyzed. The results indicate that PP100/TP0 maintained its mechanical integrity with minimal degradation (6% absolute crystallinity loss; color difference ΔE*ab = 1.45) across recycling cycles. However, blends containing TPs exhibited progressive deterioration. P98/TP2 displayed moderate reductions in mechanical strength (-10.8%) and thermochromic efficiency (color change ΔE*ab = 6.52), while PP92/TP8 showed significant degradation, including increased activation temperatures (+3.8 °C) and color vibrancy loss (42.9% loss in saturation). These effects were attributed to polymer breakdown, pigment aggregation, and altered crystallinity. Despite the limitations of recyclability, this study provides critical insights into the feasibility of TPs in sustainable, intelligent food packaging. Further research is required to enhance TP stability during reprocessing, ensuring long-term functionality in circular packaging systems.
Collapse
Affiliation(s)
- Colette Breheny
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Research Institute, Technological University of the Shannon, University Road, N37 HD68 Athlone, Ireland; (D.M.C.); (G.B.); (J.G.)
| | | | | | | | - Luke M. Geever
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Research Institute, Technological University of the Shannon, University Road, N37 HD68 Athlone, Ireland; (D.M.C.); (G.B.); (J.G.)
| |
Collapse
|
2
|
Thakkar D, Sehgal R, Narula AK, Deswal D. Smart polymers: key to targeted therapeutic interventions. Chem Commun (Camb) 2024; 61:192-206. [PMID: 39611954 DOI: 10.1039/d4cc05098c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Smart polymers represent a class of advanced materials that undergo reversible changes in their physical or chemical form and are known as responsive polymers. These polymers show transitions when external stimuli, such as temperature and pH, come into play. Smart polymers are being increasingly applied in various fields, such as drug delivery to a targeted site and gene therapy. They also play a pivotal role in tissue engineering, environmental sensors, and the development of shape memory polymers. Despite their major challenges, they remain effective in overcoming significant barriers. It can be said that these polymers have the potential to revolutionize various fields. This review highlights the underlying types and applications of smart polymers, emphasizing their roles in the future.
Collapse
Affiliation(s)
- Divyanshi Thakkar
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| | - Rhythm Sehgal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| | - A K Narula
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| | - Deepa Deswal
- Centre of Excellence in Pharmaceutical Sciences (CEPS), Guru Gobind Singh Indraprastha University (GGSIPU), New Delhi, India.
| |
Collapse
|
3
|
Alkahtani ME, Elbadawi M, Chapman CAR, Green RA, Gaisford S, Orlu M, Basit AW. Electroactive Polymers for On-Demand Drug Release. Adv Healthc Mater 2024; 13:e2301759. [PMID: 37861058 PMCID: PMC11469020 DOI: 10.1002/adhm.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/16/2023] [Indexed: 10/21/2023]
Abstract
Conductive materials have played a significant role in advancing society into the digital era. Such materials are able to harness the power of electricity and are used to control many aspects of daily life. Conductive polymers (CPs) are an emerging group of polymers that possess metal-like conductivity yet retain desirable polymeric features, such as processability, mechanical properties, and biodegradability. Upon receiving an electrical stimulus, CPs can be tailored to achieve a number of responses, such as harvesting energy and stimulating tissue growth. The recent FDA approval of a CP-based material for a medical device has invigorated their research in healthcare. In drug delivery, CPs can act as electrical switches, drug release is achieved at a flick of a switch, thereby providing unprecedented control over drug release. In this review, recent developments in CP as electroactive polymers for voltage-stimuli responsive drug delivery systems are evaluated. The review demonstrates the distinct drug release profiles achieved by electroactive formulations, and both the precision and ease of stimuli response. This level of dynamism promises to yield "smart medicines" and warrants further research. The review concludes by providing an outlook on electroactive formulations in drug delivery and highlighting their integral roles in healthcare IoT.
Collapse
Affiliation(s)
- Manal E. Alkahtani
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- Department of PharmaceuticsCollege of PharmacyPrince Sattam bin Abdulaziz UniversityAlkharj11942Saudi Arabia
| | - Moe Elbadawi
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Christopher A. R. Chapman
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Bioengineering, School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Rylie A. Green
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Simon Gaisford
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Mine Orlu
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Abdul W. Basit
- UCL School of PharmacyUniversity College London29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
4
|
Gavriel AG, Leroux F, Khurana GS, Lewis VG, Chippindale AM, Sambrook MR, Hayes W, Russell AT. Self-Immolative System for Disclosure of Reactive Electrophilic Alkylating Agents: Understanding the Role of the Reporter Group. J Org Chem 2021; 86:10263-10279. [PMID: 34292742 PMCID: PMC8389931 DOI: 10.1021/acs.joc.1c00996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The development of
stable, efficient chemoselective self-immolative
systems, for use in applications such as sensors, requires the optimization
of the reactivity and degradation characteristics of the self-immolative
unit. In this paper, we describe the effect that the structure of
the reporter group has upon the self-immolative efficacy of a prototype
system designed for the disclosure of electrophilic alkylating agents.
The amine of the reporter group (a nitroaniline unit) was a constituent
part of a carbamate that functioned as the self-immolative unit. The
number and position of substituents on the nitroaniline unit were
found to play a key role in the rate of self-immolative degradation
and release of the reporter group. The position of the nitro substituent
(meta- vs para-) and the methyl
groups in the ortho-position relative to the carbamate
exhibited an influence on the rate of elimination and stability of
the self-immolative system. The ortho-methyl substituents
imparted a twist on the N–C (aromatic) bond leading to increased
resonance of the amine nitrogen’s lone pair into the carbonyl
moiety and a decrease of the leaving character of the carbamate group;
concomitantly, this may also make it a less electron-withdrawing group
and lead to less acidification of the eliminated β-hydrogen.
Collapse
Affiliation(s)
- Alexander G Gavriel
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Flavien Leroux
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Gurjeet S Khurana
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Viliyana G Lewis
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Ann M Chippindale
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Mark R Sambrook
- CBR Division, Defence Science & Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Wayne Hayes
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Andrew T Russell
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
5
|
Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4-methylphenyl acrylate) thermo-ph responsive copolymer: trend in the lower critical solution temperature optimization of Poly (N-isopropyylacrylamide). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02574-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
V H S, Karumuthil SC, K J, Varghese S, Athiyanathil S, Panicker UG. Stimuli-Responsive Electrospun Piezoelectric Mats of Ethylene- co-vinyl Acetate-Millable Polyurethane-Nanohydroxyapatite Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24106-24116. [PMID: 33974388 DOI: 10.1021/acsami.1c02674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Piezoelectric materials have gained interest among materials scientists as body motion sensors and energy harvesters on account of their fast responsiveness and substantial output signals. In this work, piezoelectric polymer mats have been fabricated from ethylene-co-vinyl acetate-millable polyurethane/nanohydroxyapatite (EVA-MPU/nHA) composite systems by employing the electrospinning technique. The ferro-piezoelectric features of the samples were confirmed from the butterfly loops of electrostatic force microscopy (EFM) amplitude signals as well as through the hysteresis curves of the EFM phase recorded with the assistance of dynamic-contact EFM. Piezoelectric responses of the samples to random finger tapping were evaluated after fabricating a simple device prototype connected to an oscilloscope. The efficacy of the mats to generate a voltage in response to activities such as mechanical bending, movement of throat muscles while drinking, movement of elbow joints, air blowing, and so forth has also been investigated. The results suggest the promising possibility of fabricating user-friendly piezoelectric mats out of the EVA-MPU/nHA system for physiological motion-sensing applications.
Collapse
Affiliation(s)
- Shafeeq V H
- Polymer Science and Technology Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Subash Cherumannil Karumuthil
- Nanomaterials and Devices Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Juraij K
- Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Soney Varghese
- Nanomaterials and Devices Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Sujith Athiyanathil
- Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Unnikrishnan Gopalakrishna Panicker
- Polymer Science and Technology Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| |
Collapse
|
7
|
Mei X, Villamagna IJ, Nguyen T, Beier F, Appleton CT, Gillies ER. Polymer particles for the intra-articular delivery of drugs to treat osteoarthritis. Biomed Mater 2021; 16. [PMID: 33711838 DOI: 10.1088/1748-605x/abee62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a leading cause of chronic disability. It is a progressive disease, involving pathological changes to the entire joint, resulting in joint pain, stiffness, swelling, and loss of mobility. There is currently no disease-modifying pharmaceutical treatment for OA, and the treatments that do exist suffer from significant side effects. An increasing understanding of the molecular pathways involved in OA is leading to many potential drug targets. However, both current and new therapies can benefit from a targeted approach that delivers drugs selectively to joints at therapeutic concentrations, while limiting systemic exposure to the drugs. Delivery systems including hydrogels, liposomes, and various types of particles have been explored for intra-articular drug delivery. This review will describe progress over the past several years in the development of polymer-based particles for OA treatment, as well as their in vitro, in vivo, and clinical evaluation. Systems based on biopolymers such as polysaccharides and polypeptides, as well as synthetic polyesters, poly(ester amide)s, thermoresponsive polymers, poly(vinyl alcohol), amphiphilic polymers, and dendrimers will be described. We will discuss the role of particle size, biodegradability, and mechanical properties in the behavior of the particles in the joint, and the challenges to be addressed in future research.
Collapse
Affiliation(s)
- Xueli Mei
- Department of Chemistry, Western University, 1151 Richmond St., London, Ontario, N6A 5B7, CANADA
| | - Ian J Villamagna
- School of Biomedical Engineering, Western University, 1151 Richmond St., London, Ontario, N6A 5B9, CANADA
| | - Tony Nguyen
- Department of Chemistry, Western University, 1151 Richmond St., London, Ontario, N6A 5B7, CANADA
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, Ontario, N6A 3B7, CANADA
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Department of Medicine, Western University, 1151 Richmond St., London, Ontario, N6A 3B7, CANADA
| | - Elizabeth R Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering, Western University, 1151 Richmond St., London, Ontario, N6A 5B7, CANADA
| |
Collapse
|
8
|
Thermally Switchable Electrically Conductive Thermoset rGO/PK Self-Healing Composites. Polymers (Basel) 2021; 13:polym13030339. [PMID: 33494537 PMCID: PMC7865638 DOI: 10.3390/polym13030339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
Among smart materials, self-healing is one of the most studied properties. A self-healing polymer can repair the cracks that occurred in the structure of the material. Polyketones, which are high-performance thermoplastic polymers, are a suitable material for a self-healing mechanism: a furanic pendant moiety can be introduced into the backbone and used as a diene for a temperature reversible Diels-Alder reaction with bismaleimide. The Diels-Alder adduct is formed at around 50 °C and broken at about 120 °C, giving an intrinsic, stimuli-responsive self-healing material triggered by temperature variations. Also, reduced graphene oxide (rGO) is added to the polymer matrix (1.6-7 wt%), giving a reversible OFF-ON electrically conductive polymer network. Remarkably, the electrical conductivity is activated when reaching temperatures higher than 100 °C, thus suggesting applications as electronic switches based on self-healing soft devices.
Collapse
|
9
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
10
|
Li S, Xia B, Javed B, Hasley WD, Melendez-Davila A, Liu M, Kerzner M, Agarwal S, Xiao Q, Torre P, Bermudez JG, Rahimi K, Kostina NY, Möller M, Rodriguez-Emmenegger C, Klein ML, Percec V, Good MC. Direct Visualization of Vesicle Disassembly and Reassembly Using Photocleavable Dendrimers Elucidates Cargo Release Mechanisms. ACS NANO 2020; 14:7398-7411. [PMID: 32383856 DOI: 10.1021/acsnano.0c02912] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Release of cargo molecules from cell-like nanocarriers can be achieved by chemical perturbations, including changes to pH and redox state and via optical modulation of membrane properties. However, little is known about the kinetics or products of vesicle breakdown due to limitations in real-time imaging at nanometer length scales. Using a library of 12 single-single type photocleavable amphiphilic Janus dendrimers, we developed a self-assembling light-responsive dendrimersome vesicle platform. A photocleavable ortho-nitrobenzyl inserted between the hydrophobic and hydrophilic dendrons of amphiphilic Janus dendrimers allowed for photocleavage and disassembly of their supramolecular assemblies. Distinct methods used to self-assemble amphiphilic Janus dendrimers produced either nanometer size small unilamellar vesicles or micron size giant multilamellar and onion-like dendrimersomes. In situ observation of giant photosensitive dendrimersomes via confocal microscopy elucidated rapid morphological transitions that accompany vesicle breakdown upon 405 nm laser illumination. Giant dendrimersomes displayed light-induced cleavage, disassembling and reassembling into much smaller vesicles at millisecond time scales. Additionally, photocleavable vesicles demonstrated rapid release of molecular and macromolecular cargos. These results guided our design of multilamellar particles to photorelease surface-attached proteins, photoinduce cargo recruitment, and photoconvert vesicle morphology. Real-time characterization of the breakdown and reassembly of lamellar structures provides insights on partial cargo retention and informs the design of versatile, optically regulated carriers for applications in nanoscience and synthetic biology.
Collapse
Affiliation(s)
- Shangda Li
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Boao Xia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, United States
| | - Bilal Javed
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - William D Hasley
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Adriel Melendez-Davila
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Meir Kerzner
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shriya Agarwal
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Paola Torre
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, United States
| | - Jessica G Bermudez
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, United States
| | - Khosrow Rahimi
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Nina Yu Kostina
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew C Good
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, United States
| |
Collapse
|