1
|
Li H, Yuan S, You J, Zhao C, Cheng X, Luo L, Yan X, Shen S, Zhang J. Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis. NANO-MICRO LETTERS 2025; 17:225. [PMID: 40257747 PMCID: PMC12011709 DOI: 10.1007/s40820-025-01719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
Urgent requirements of the renewable energy boost the development of stable and clean hydrogen, which could effectively displace fossil fuels in mitigating climate changes. The efficient interconversion of hydrogen and electronic is highly based on polymer electrolyte membrane fuel cells (PEMFCs) and water electrolysis (PEMWEs). However, the high cost continues to impede large-scale commercialization of both PEMFC and PEMWE technologies, with the expense primarily attributed to noble catalysts serving as a major bottleneck. The reduction of Pt loading in PEMFCs is essential but limited by the oxygen transport resistance in the cathode catalyst layers (CCLs), while the oxygen transport in anode catalyst layers (ACLs) in PEMWEs also being focused as the Ir/IrOx catalyst reduced. The pore structure and the catalyst-ionomer agglomerates play important roles in the oxygen transport process of both PEMFCs and PEMWEs due to the similarity of membrane electrode assembly (MEA). Herein, the oxygen transport mechanism of PEMFCs in pore structure and ionomer thin films in CCLs is systematically reviewed, while state-of-the-art strategies are presented for enhancing oxygen transport and performance through materials and structural design. The deeply research opens avenues for exploring similar key scientific problems in oxygen transport process of PEMWEs and their further development.
Collapse
Affiliation(s)
- Huiyuan Li
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shu Yuan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiabin You
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Congfan Zhao
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaojing Cheng
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaohui Yan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
2
|
Ahmed YW, Loukanov A, Tsai HC. State-of-the-Art Synthesis of Porous Polymer Materials and Their Several Fantastic Biomedical Applications: a Review. Adv Healthc Mater 2024:e2403743. [PMID: 39723689 DOI: 10.1002/adhm.202403743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Porous polymers, including hydrogels, covalent organic frameworks (COFs), and hyper crosslinked polymers (HCPs), have become essential in biomedical research for their tunable pore architectures, large surface areas, and functional versatility. This review provides a comprehensive overview of their classification and updated synthesis mechanisms, such as 3D printing, electrospinning, and molecular imprinting. Their pivotal roles in drug delivery, tissue engineering, wound healing, and photodynamic/photothermal therapies, focusing on how pore size, distribution, and architecture impact drug release, cellular interactions, and therapeutic outcomes, are explored. Key challenges, including biocompatibility, mechanical strength, controlled degradation, and scalability, are critically assessed alongside emerging strategies to enhance clinical potential. Finally, recent challenges and future perspectives, emphasizing the broader biomedical applications of porous polymers, are addressed. This work provides valuable insights for advancing next-generation biomedical innovations through these materials.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
| | - Alexandre Loukanov
- Department of Chemistry and Material Science, National Institute of Technology, Gunma College, Maebashi, 371-8530, Japan
- Laboratory of Engineering NanoBiotechnology, University of Mining and Geology, St Ivan Rilski, Sofia, 1100, Bulgaria
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei, Taiwan, 106, P. R. China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan, 320, P. R. China
| |
Collapse
|
3
|
Castillo-Santillan M, Quiñonez-Angulo P, Maniar D, Torres-Lubian JR, Gutiérrez MC, Pelras T, Woortman AJJ, Chen Q, Pérez-García MG, Loos K, Mota-Morales JD. Ring-opening polymerization of emulsion-templated deep eutectic system monomer for macroporous polyesters with controlled degradability. RSC APPLIED POLYMERS 2024; 2:403-414. [PMID: 38800513 PMCID: PMC11114569 DOI: 10.1039/d3lp00232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/03/2024] [Indexed: 05/29/2024]
Abstract
Biodegradable polyesters with interconnected macroporosity, such as poly(l-lactide) (PLLA) and poly(ε-caprolactone) (PCL), have gained significant importance in the fields of tissue engineering and separation. This study introduces functional macroinitiators, specifically polycaprolactone triol (PCLT) and polyethylene glycol (PEG), both OH-terminated, in the solventless ring-opening polymerization (ROP) of a liquid deep eutectic system monomer (DESm) composed of LLA and CL at a 30 : 70 molar ratio, respectively. The macroinitiators selectively initiate the organocatalyzed ROP of LLA in the DESm during the first polymerization stage, thereby modifying the PLLA architecture. This results in the formation of either branched or linear PLLA copolymers depending on the macroinitiator, PCLT and PEG, respectively. In the second stage, the ROP of the CL, which is a counterpart of the DESm, produces PCL that blends with the previously formed PLLA. The insights gained into the PLLA architectures during the first stage of the DESm ROP, along with the overall molecular weight and hydrophobicity of the resulting PLLA/PCL blend in bulk, were advantageously used to design polymerizable high internal phase emulsions (HIPEs) oil-in-DESm. By incorporating a liquid mixture of DESm and macroinitiators (PCLT or PEG), stable HIPE formulations were achieved. These emulsions sustained the efficient organocatalyzed ROP of the continuous phase at 37 °C with high conversions. The resulting polymer replicas of the HIPEs, characterized by macroporous and interconnected structures, were subjected to a degradation assay in PBS at pH 7.4 and 37 °C and remained mechanically stable for at least 30 days. Notably, they exhibited the capability to sorb crude oil in a proof-of-concept test, with a rate of 2 g g-1. The macroporous and interconnected features of the polyHIPEs, combined with their inherent degradation properties, position them as promising degradable polymeric sorbents for efficient separation of hydrophobic fluids from water.
Collapse
Affiliation(s)
- Martín Castillo-Santillan
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Querétaro QRO 76230 Mexico
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Priscila Quiñonez-Angulo
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Querétaro QRO 76230 Mexico
| | - Dina Maniar
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | | | - María C Gutiérrez
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC) Cantoblanco 28049 Madrid Spain
| | - Théophile Pelras
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Albert J J Woortman
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Qi Chen
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | | | - Katja Loos
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen 9747AG Groningen The Netherlands
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Querétaro QRO 76230 Mexico
| |
Collapse
|
4
|
Ly I, Layan E, Picheau E, Chanut N, Nallet F, Bentaleb A, Dourges MA, Pellenq RJ, Hillard EA, Toupance T, Dole F, Louërat F, Backov R. Design of Binary Nb 2O 5-SiO 2 Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel-Crafts Alkylation/Acylation Catalytic Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13305-13316. [PMID: 35258941 DOI: 10.1021/acsami.1c24554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5-SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol-gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel-Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h-1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h-1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.
Collapse
Affiliation(s)
- Isabelle Ly
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| | - Elodie Layan
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| | - Emmanuel Picheau
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| | - Nicolas Chanut
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, MIT Energy Initiative, 77 Massachussets Avenue, Cambridge, Massachusetts 02139, United States
| | - Frédéric Nallet
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| | - Ahmed Bentaleb
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| | - Marie-Anne Dourges
- CNRS, Bordeaux INP, ISM, UMR 5255, Université de Bordeaux, 351 Cours de la Libération, Talence Cedex F-33405, France
| | - Roland J Pellenq
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, MIT Energy Initiative, 77 Massachussets Avenue, Cambridge, Massachusetts 02139, United States
| | - Elizabeth A Hillard
- ICMCB-UMR CNRS 5026, Université de Bordeaux, 87 Avenue Albert Schweitzer, Pessac Cedex 33608, France
| | - Thierry Toupance
- CNRS, Bordeaux INP, ISM, UMR 5255, Université de Bordeaux, 351 Cours de la Libération, Talence Cedex F-33405, France
| | - François Dole
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| | - Frédéric Louërat
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| | - Rénal Backov
- CRPP-UMR CNRS 5031, Université de Bordeaux, 115 Avenue Albert Schweitzer, Pessac 33600, France
| |
Collapse
|
5
|
Israel S, Levin M, Oliel S, Mayer D, Lerner I, Silverstein MS. Hierarchical Porosity in Emulsion-Templated, Porogen-Containing Interpenetrating Polymer Networks: Hyper-Cross-Linking and Carbonization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sima Israel
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Michal Levin
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Sapir Oliel
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Dahiana Mayer
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Idan Lerner
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Michael S. Silverstein
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
6
|
Li X, Zhang T, Lu J, Xu Z, Zhao Y. Emulsion-Templated, Magnetic, Hydrophilic-Oleophobic Composites for Controlled Water Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1422-1431. [PMID: 35034443 DOI: 10.1021/acs.langmuir.1c02583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emulsion-templated, hydrophilic-oleophobic porous materials are promising for the removal of a small amount of water from oil-water mixtures, but the maneuver and complete collection of these porous materials are challenging. Herein, we report the fabrication of magnetic, hydrophilic-oleophobic polyHIPE composites from reactive Fe3O4 nanoparticle-stabilized high internal phase emulsions through simultaneous bulk polymerization of water-soluble monomers and interface-catalyzed polycondensation of 1H,1H,2H,2H-perfluorooctyltriethoxysilane. The resulting composites were hydrophilic-oleophobic, with water droplets rapidly absorbed (within 20 s), and exhibited designable magnetic responsiveness. The hydrophilicity-oleophobicity enabled water to be removed through selective absorption from oil-water mixtures (including surfactant-stabilized water-in-oil emulsions), with a high separation rate over 99%. The magnetic-responsiveness enabled both the dry and the swollen composites to be maneuvered in a remote and contactless manner and to be fully collected. Therefore, the magnetic, hydrophilic-oleophobic polyHIPE composites are excellent candidates for the removal of water from water-oil mixtures with complete collection.
Collapse
Affiliation(s)
- Xiaomin Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tao Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| | - Jintao Lu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Al-tarawneh SS, Ababneh T, Aljaafreh I. Amination of ether-linked polymers via the application of Ullmann-coupling reaction: synthesis, characterization, porosity, and thermal stability evaluation. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1947662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Suha S. Al-tarawneh
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila, Jordan
| | - Taher Ababneh
- Chemistry Department, Yarmouk University, Irbid, Jordan
| | - Ibtesam Aljaafreh
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila, Jordan
| |
Collapse
|
8
|
Zhang S, Zhou P, Sun Y, Zhu Y, Zhang K. Fabrication of emulsion-templated polystyrene absorbent using 4-arm star-shaped poly(ɛ-caprolactone) as property defining crosslinker. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Horowitz A, Shaul G, Silverstein MS. One‐pot emulsion templating for simultaneous hydrothermal carbonization and hydrogel synthesis: porous structures, nitrogen contents and activation. POLYM INT 2021. [DOI: 10.1002/pi.6215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adi Horowitz
- Department of Materials Science and Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Gil Shaul
- Department of Materials Science and Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Michael S Silverstein
- Department of Materials Science and Engineering Technion – Israel Institute of Technology Haifa Israel
| |
Collapse
|
10
|
Senthilkumaran M, Muthu Mareeswaran P. Porous polymers-based adsorbent materials for CO2 capture. NANOMATERIALS FOR CO2 CAPTURE, STORAGE, CONVERSION AND UTILIZATION 2021:31-52. [DOI: 10.1016/b978-0-12-822894-4.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
11
|
|
12
|
|
13
|
|