1
|
Bar-lev I, Shwartsman K, Singh VK, Bruchiel-Spanier N, Ryan E, Shpigel N, Sharon D. Enhancing Efficiency, Stability, and Cycle Life of Lithium Metal Electrodeposition in Dry Solid-State Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66159-66169. [PMID: 39565114 PMCID: PMC11622184 DOI: 10.1021/acsami.4c15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Dry solid polymer electrolytes (SPEs), particularly those based on poly(ethylene oxide) (PEO), hold significant potential for advancing solid-state Li-metal battery (LMB) technology. Despite extensive research over the years, a comprehensive evaluation of Coulombic efficiency (CE), deposit stability, and cycle life for reversible Li metal electrodeposition in SPE-based cells is still lacking. In this study, we systematically assess the effect of cycling conditions on the CE of Li|SPE|Cu half cells and provide a thorough examination of different electrolyte chemistries, highlighting and explaining their performance across various parameters. While the efficiency of the PEO-based SPEs still falls short of the efficiency benchmark set by liquid and gel electrolytes, we demonstrated >95% CE with Lithium bis(fluorosulfonyl)imide (LiFSI)-based SPEs, surpassing previous reports for dry SPEs in a Li|SPE|Cu cells, this result marks a significant breakthrough. Furthermore, our findings highlight the critical impact of the Li-SPE interphase on these performance metrics. The LiFSI-based SPE forms a Li-rich, high-conductivity interphase, which not only enhances efficiency but also improves cycle life and Li deposit stability. These results underscore the importance of selecting the right polymer electrolyte chemistry and concentration to enhance SPE performance.
Collapse
Affiliation(s)
- Idan Bar-lev
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Keren Shwartsman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Vivek Kumar Singh
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Emily Ryan
- Department
of Mechanical Engineering; Division of Materials Science and Engineering;
Institute for Global Sustainability, Boston
University, Boston, Massachusetts 02215, United States
| | - Netanel Shpigel
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Daniel Sharon
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Song Z, Tian M, Zhu J, Chen J, Feng W, Ben L, Yu H, Huang X, Armand M, Zhou Z, Zhang H. Super SEI-Forming Anion for Enhanced Interfacial Stability in Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410954. [PMID: 39380408 DOI: 10.1002/adma.202410954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The extremely high chemical reactivity of lithium metal (Li°) electrodes and its enormous volume change during repetitive cycles cause continuous interfacial degradations in prevailing organic electrolytes, thus deteriorating the cycling performances of rechargeable lithium metal batteries (LMBs). Herein, departing from traditional wisdom on the design of electrolyte components, a super SEI-forming anion (SSA), as an efficient percussor for building stable interphases on Li° electrode, is proposed. Comprehensive investigations related to the unique anion chemistry of SSA reveal that the sulfonate and polyfluoroalkyl functionalities synergistically contribute to uniform spatial distributions of designer interfacial species, greatly improving the surface coverage property and conformal ability of the resulting interphases. Consequently, the incorporation of SSA leads to significant improvements in the cyclability of Li° electrode (exceeding 575 mAh cm-2 before failure) and the corresponding rechargeable Li°||LiFePO4 cells [a five-time increase in lifespan as compared to the benchmark cell with the popular SEI-forming anion bis(fluorosulfonyl)imide (FSI)]. The present work offers a paradigm shift to tame the notorious interfacial issues via upgraded anion chemistry, which can promote the practical development of rechargeable LMBs and other kinds of metal batteries.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mengyu Tian
- Beijing National Laboratory of Condensed Matter Physics, Chinese Academy Sciences, Institute of Physics, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Jing Zhu
- Beijing National Laboratory of Condensed Matter Physics, Chinese Academy Sciences, Institute of Physics, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Liubin Ben
- Beijing National Laboratory of Condensed Matter Physics, Chinese Academy Sciences, Institute of Physics, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Hailong Yu
- Beijing National Laboratory of Condensed Matter Physics, Chinese Academy Sciences, Institute of Physics, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejie Huang
- Beijing National Laboratory of Condensed Matter Physics, Chinese Academy Sciences, Institute of Physics, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Àlava Technology Park, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
3
|
Song Z, Wang X, Feng W, Armand M, Zhou Z, Zhang H. Designer Anions for Better Rechargeable Lithium Batteries and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310245. [PMID: 38839065 DOI: 10.1002/adma.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingxing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
4
|
Tang S, Mei Q, Zhai Y, Liu Y. Cation-polymerized artificial SEI layer modified Li metal applied in soft-matter polymer electrolyte. NANOTECHNOLOGY 2024; 35:335401. [PMID: 38729124 DOI: 10.1088/1361-6528/ad49ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Li metal batteries with polymer electrolyte are of great interest for next-generation batteries for high safety and high energy density. However, uneven deposition on the lithium metal surface can greatly affect battery life. Therefore, surface modification on the Li metal become necessary to achieve good performance. Herein, an artificial solid electrolyte interface (SEI) modified lithium metal anode is prepared using cation-polymerization process, as triggered by PF5generated from CsPF6. As a result, the polarization voltage of Li||Li symmetric battery assembled with artificial SEI-modified Li metal anode was stable with a small over-potential of 25 mV after 3000 h at current density of 1.5 mA cm-2. Electrochemical performance of Li||NCM 622 (LiNi0.6Co0.2Mn0.2O2) full cell with soft-matter polymer electrolyte is significantly improved than bare Li-metal, the capacity retention is 75% after 120 cycles with N/P = 3:1 at a cut-off voltage of 4.3 V. Our work has shed lights on the commercialization of Li metal battery with polymer electrolyte.
Collapse
Affiliation(s)
- Siming Tang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Qingyang Mei
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yutong Zhai
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yulong Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| |
Collapse
|
5
|
Makhlooghiazad F, Miguel Guerrero Mejía L, Rollo-Walker G, Kourati D, Galceran M, Chen F, Deschamps M, Howlett P, O'Dell LA, Forsyth M. Understanding Polymerized Ionic Liquids as Solid Polymer Electrolytes for Sodium Batteries. J Am Chem Soc 2024; 146:1992-2004. [PMID: 38221743 DOI: 10.1021/jacs.3c10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Solid polymer electrolytes (SPEs) have emerged as promising candidates for sodium-based batteries due to their cost-effectiveness and excellent flexibility. However, achieving high ionic conductivity and desirable mechanical properties in SPEs remains a challenge. In this study, we investigated an AB diblock copolymer, PS-PEA(BuImTFSI), as a potential SPE for sodium batteries. We explored binary and ternary electrolyte systems by combining the polymer with salt and [C3mpyr][FSI] ionic liquid (IL) and analyzed their thermal and electrochemical properties. Differential scanning calorimetry revealed phase separation in the polymer systems. The addition of salt exhibited a plasticizing effect localized to the polyionic liquid (PIL) phase, resulting in an increased ionic conductivity in the binary electrolytes. Introducing the IL further enhanced the plasticizing effect, elevating the ionic conductivity in the ternary system. Spectroscopic analysis, for the first time, revealed that the incorporation of NaFSI and IL influences the conformation of TFSI- and weakens the interaction between TFSI- and the polymer. This establishes correlations between anions and Na+, ultimately enhancing the diffusivity of Na ions. The electrochemical properties of an optimized SPE in Na/Na symmetrical cells were investigated, showcasing stable Na plating/stripping at high current densities up to 0.7 mA cm-2, maintaining its integrity at 70 °C. Furthermore, we evaluated the performance of a Na|NaFePO4 cell cycled at different rates (C/10 and C/5) and temperatures (50 and 70 °C), revealing remarkable high-capacity retention and Coulombic efficiency. This study highlights the potential of solvent-free diblock copolymer electrolytes for high-performance sodium-based energy storage systems, contributing to advanced electrolyte materials.
Collapse
Affiliation(s)
- Faezeh Makhlooghiazad
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood, Victoria 3125, Australia
| | - Luis Miguel Guerrero Mejía
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood, Victoria 3125, Australia
| | - Greg Rollo-Walker
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood, Victoria 3125, Australia
| | - Dani Kourati
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- CNRS, CEMHTI UPR 3079, University of Orléans, F-45071 Orléans, France
| | - Montserrat Galceran
- Centre for Cooperative Research on Alternative Engeries (CIC energiGUNE), Basque Research and Technology Alliance (BRTA) Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Fangfang Chen
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood, Victoria 3125, Australia
| | - Michaël Deschamps
- CNRS, CEMHTI UPR 3079, University of Orléans, F-45071 Orléans, France
| | - Patrick Howlett
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood, Victoria 3125, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood, Victoria 3125, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Burwood, Victoria 3125, Australia
- ARC Industry Training Transformation Centre for Future Energy Storage Technologies (StorEnergy), Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
6
|
Song Z, Chen F, Martinez-Ibañez M, Feng W, Forsyth M, Zhou Z, Armand M, Zhang H. A reflection on polymer electrolytes for solid-state lithium metal batteries. Nat Commun 2023; 14:4884. [PMID: 37573412 PMCID: PMC10423282 DOI: 10.1038/s41467-023-40609-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
Before the debut of lithium-ion batteries (LIBs) in the commodity market, solid-state lithium metal batteries (SSLMBs) were considered promising high-energy electrochemical energy storage systems before being almost abandoned in the late 1980s because of safety concerns. However, after three decades of development, LIB technologies are now approaching their energy content and safety limits imposed by the rocking chair chemistry. These aspects are prompting the revival of research activities in SSLMB technologies at both academic and industrial levels. In this perspective article, we present a personal reflection on solid polymer electrolytes (SPEs), spanning from early development to their implementation in SSLMBs, highlighting key milestones. In particular, we discuss the SPEs' characteristics taking into account the concept of coupled and decoupled SPEs proposed by C. Austen Angell in the early 1990s. Possible remedies to improve the physicochemical and electrochemical properties of SPEs are also examined. With this article, we also aim to highlight the missing blocks in building ideal SSLMBs and stimulate research towards innovative electrolyte materials for future rechargeable high-energy batteries.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Fangfang Chen
- Institute for Frontier Materials, Deakin University, Burwood, VIC, 3125, Australia.
| | - Maria Martinez-Ibañez
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510, Vitoria-Gasteiz, Spain
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Burwood, VIC, 3125, Australia
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510, Vitoria-Gasteiz, Spain.
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China.
| |
Collapse
|
7
|
Sánchez-Diez E, Garcia L, Arcelus O, Qiao L, San Felices L, Carrasco J, Armand M, Martínez-Ibañez M, Zhang H. Crystal structure and cation-anion interactions of potassium (Difluoromethanesulfonyl) (trifluorome thanesulfonyl)imide. Front Chem 2023; 11:1191394. [PMID: 37502234 PMCID: PMC10368979 DOI: 10.3389/fchem.2023.1191394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Sulfonimide salts are of great interest for battery use thanks to their special properties including sufficient superior chemical/thermal stabilities, structural flexibility, etc. In particular, the hydrogen-containing sulfonimide (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide anion {[N(SO2CF2H) (SO2CF3)]-, DFTFSI-}, stands out owing to its suppressed anion mobility and superior electrochemical properties. We herein report the structural analyses of potassium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide {K [N(SO2CF2H) (SO2CF3)], KDFTFSI} by virtue of single crystal X-ray diffraction and computational approaches. Our results reveal that KDFTFSI crystallizes in a orthorhombic cell (space group: Pbcn) comprising of cationic and anionic layers, which is similar to the conventional sulfonimide salt, potassium bis(trifluoromethanesulfonyl)imide {K [N(SO2CF3)2], KTFSI}. Gas-phase density functional theory calculations show that the conversion from trans to cis DFTFSI- anions is hindered due to the presence of stabilizing intramolecular H-bonding interactions in the trans conformer; yet interaction with K+ substantially minimizes the energy difference between the two conformers due to the formation of strong tridentate K+ coordination with oxygen atoms in the cis KDFTFSI. This work is anticipated to provide further understanding on the structure-property relations of hydrogenated sulfonimide anions, and thus inspire the structural design of new anions for battery research.
Collapse
Affiliation(s)
- Eduardo Sánchez-Diez
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain
| | - Lorena Garcia
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain
| | - Oier Arcelus
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain
| | - Lixin Qiao
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain
| | - Leire San Felices
- Servicios Generales de Investigación SGIker, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Bilbao, Spain
| | - Javier Carrasco
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain
| | - Maria Martínez-Ibañez
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Vitoria-Gasteiz, Spain
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhang H, Qiao L, Armand M. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angew Chem Int Ed Engl 2022; 61:e202214054. [PMID: 36219515 DOI: 10.1002/anie.202214054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Rechargeable magnesium batteries (RMBs) have been considered as one of the most viable battery chemistries amongst the "post" lithium-ion battery (LIB) technologies owing to their high volumetric capacity and the natural abundance of their key elements. The fundamental properties of Mg-ion conducting electrolytes are of essence to regulate the overall performance of RMBs. In this Review, the basic electrochemistry of Mg-ion conducting electrolytes batteries is discussed and compared to that of the Li-ion conducting electrolytes, and a comprehensive overview of the development of different Mg-ion conducting electrolytes is provided. In addition, the remaining challenges and possible solutions for future research are intensively discussed. The present work is expected to give an impetus to inspire the discovery of key electrolytes and thereby improve the electrochemical performances of RMBs and other related emerging battery technologies.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Lixin Qiao
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Mandade P, Weil M, Baumann M, Wei Z. Environmental Life Cycle Assessment of Emerging Solid-State Batteries: A Review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Qiao L, Rodriguez Peña S, Martínez-Ibañez M, Santiago A, Aldalur I, Lobato E, Sanchez-Diez E, Zhang Y, Manzano H, Zhu H, Forsyth M, Armand M, Carrasco J, Zhang H. Anion π-π Stacking for Improved Lithium Transport in Polymer Electrolytes. J Am Chem Soc 2022; 144:9806-9816. [PMID: 35638261 DOI: 10.1021/jacs.2c02260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymer electrolytes (PEs) with excellent flexibility, processability, and good contact with lithium metal (Li°) anodes have attracted substantial attention in both academic and industrial settings. However, conventional poly(ethylene oxide) (PEO)-based PEs suffer from a low lithium-ion transference number (TLi+), leading to a notorious concentration gradient and internal cell polarization. Here, we report two kinds of highly lithium-ion conductive and solvent-free PEs using the benzene-based lithium salts, lithium (benzenesulfonyl)(trifluoromethanesulfonyl)imide (LiBTFSI) and lithium (2,4,6-triisopropylbenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiTPBTFSI), which show significantly improved TLi+ and selective lithium-ion conductivity. Using molecular dynamics simulations, we pinpoint the strong π-π stacking interaction between pairs of benzene-based anions as the cause of this improvement. In addition, we show that Li°∥Li° and Li°∥LiFePO4 cells with the LiBTFSI/PEO electrolytes present enhanced cycling performance. By considering π-π stacking interactions as a new molecular-level design route of salts for electrolyte, this work provides an efficient and facile novel strategy for attaining highly selective lithium-ion conductive PEs.
Collapse
Affiliation(s)
- Lixin Qiao
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.,Department of Polymer Science and Technology, University of the Basque Country (UPV/EHU), M. de Lardizábal 3, 20018 San Sebastian, Spain
| | - Sergio Rodriguez Peña
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.,Department of Physics, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - María Martínez-Ibañez
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Alexander Santiago
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Itziar Aldalur
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Elias Lobato
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Eduardo Sanchez-Diez
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Yan Zhang
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Hegoi Manzano
- Department of Physics, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Haijin Zhu
- ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials (IFM), Deakin University, Geelong, Victoria 3220, Australia
| | - Maria Forsyth
- ARC Centre of Excellence for Electromaterials Science (ACES), Institute for Frontier Materials (IFM), Deakin University, Geelong, Victoria 3220, Australia.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Javier Carrasco
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Wuhan, China
| |
Collapse
|
11
|
Loaiza LC, Johansson P. Li‐salt Doped Single‐ion Conducting Polymer Electrolytes for Lithium Battery Application. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura C. Loaiza
- Department of Physics Chalmers University of Technology Göteborg SE‐41296 SWEDEN
| | - Patrik Johansson
- Department of Physics Chalmers University of Technology Göteborg SE‐41296 SWEDEN
- ALISTORE‐European Research Institute FR CNRS 3104, Hub de I'Energie, 15 Rue Baudelocque Amiens 80039 FRANCE
| |
Collapse
|
12
|
Wang X, Song Z, Wu H, Nie J, Feng W, Yu H, Huang X, Armand M, Zhou Z, Zhang H. Unprecedented impact of main chain on comb polymer electrolytes performances. ChemElectroChem 2022. [DOI: 10.1002/celc.202101590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xingxing Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Ziyu Song
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Hao Wu
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Jin Nie
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Wenfang Feng
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Hailong Yu
- IOP CAS: Chinese Academy of Sciences Institute of Physics IOP CHINA
| | - Xuejie Huang
- IOP CAS: Chinese Academy of Sciences Institute of Physics iop CHINA
| | | | - Zhibin Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Heng Zhang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| |
Collapse
|
13
|
Ramasubramanian B, Reddy MV, Zaghib K, Armand M, Ramakrishna S. Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2476. [PMID: 34684917 PMCID: PMC8538702 DOI: 10.3390/nano11102476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Metal-ion batteries are capable of delivering high energy density with a longer lifespan. However, they are subject to several issues limiting their utilization. One critical impediment is the budding and extension of solid protuberances on the anodic surface, which hinders the cell functionalities. These protuberances expand continuously during the cyclic processes, extending through the separator sheath and leading to electrical shorting. The progression of a protrusion relies on a number of in situ and ex situ factors that can be evaluated theoretically through modeling or via laboratory experimentation. However, it is essential to identify the dynamics and mechanism of protrusion outgrowth. This review article explores recent advances in alleviating metal dendrites in battery systems, specifically alkali metals. In detail, we address the challenges associated with battery breakdown, including the underlying mechanism of dendrite generation and swelling. We discuss the feasible solutions to mitigate the dendrites, as well as their pros and cons, highlighting future research directions. It is of great importance to analyze dendrite suppression within a pragmatic framework with synergy in order to discover a unique solution to ensure the viability of present (Li) and future-generation batteries (Na and K) for commercial use.
Collapse
Affiliation(s)
| | - M. V. Reddy
- Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada
| | - Karim Zaghib
- Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, QC H3A OC5, Canada;
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies, Basque Research and Technology Alliance, Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
14
|
Zhan H, Wu M, Wang R, Wu S, Li H, Tian T, Tang H. Excellent Performances of Composite Polymer Electrolytes with Porous Vinyl-Functionalized SiO 2 Nanoparticles for Lithium Metal Batteries. Polymers (Basel) 2021; 13:polym13152468. [PMID: 34372070 PMCID: PMC8347765 DOI: 10.3390/polym13152468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Composite polymer electrolytes (CPEs) incorporate the advantages of solid polymer electrolytes (SPEs) and inorganic solid electrolytes (ISEs), which have shown huge potential in the application of safe lithium-metal batteries (LMBs). Effectively avoiding the agglomeration of inorganic fillers in the polymer matrix during the organic–inorganic mixing process is very important for the properties of the composite electrolyte. Herein, a partial cross-linked PEO-based CPE was prepared by porous vinyl-functionalized silicon (p-V-SiO2) nanoparticles as fillers and poly (ethylene glycol diacrylate) (PEGDA) as cross-linkers. By combining the mechanical rigidity of ceramic fillers and the flexibility of PEO, the as-made electrolyte membranes had excellent mechanical properties. The big special surface area and pore volume of nanoparticles inhibited PEO recrystallization and promoted the dissolution of lithium salt. Chemical bonding improved the interfacial compatibility between organic and inorganic materials and facilitated the homogenization of lithium-ion flow. As a result, the symmetric Li|CPE|Li cells could operate stably over 450 h without a short circuit. All solid Li|LiFePO4 batteries were constructed with this composite electrolyte and showed excellent rate and cycling performances. The first discharge-specific capacity of the assembled battery was 155.1 mA h g−1, and the capacity retention was 91% after operating for 300 cycles at 0.5 C. These results demonstrated that the chemical grafting of porous inorganic materials and cross-linking polymerization can greatly improve the properties of CPEs.
Collapse
Affiliation(s)
- Hui Zhan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Mengjun Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Rui Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Shuohao Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
| | - Tian Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
- Guangdong Hydrogen Energy Institute of WHUT Xianhu Hydrogen Valley, Foshan 528200, China
- Correspondence: (T.T.); (H.T.)
| | - Haolin Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (H.Z.); (M.W.); (R.W.); (S.W.); (H.L.)
- Guangdong Hydrogen Energy Institute of WHUT Xianhu Hydrogen Valley, Foshan 528200, China
- Correspondence: (T.T.); (H.T.)
| |
Collapse
|