1
|
Albano G, Bertuolo M, Zinna F, Taddeucci A, Jávorfi T, Hussain R, Farinola GM, Pescitelli G, Punzi A, Siligardi G, Di Bari L. Unravelling the origin of strong non-reciprocal chiroptical features in thin films of a chiral diketopyrrolo[3,4- c]pyrrole dye. NANOSCALE 2025; 17:5128-5140. [PMID: 39873441 DOI: 10.1039/d4nr04956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The development of chiral organic materials with strong non-reciprocal chiroptical features may have major implications for cutting-edge technological applications. In this work, a new ad hoc synthesized chiral 1,4-diketo-3,6-dithienylpyrrolo[3,4-c]pyrrole dye, bearing two (S)-3,7-dimethyl-1-octyl alkyl chains on the lactam moieties and functionalized with two lateral 9-anthracenyl π-conjugated units, exhibited strong non-reciprocal chiroptical properties in thin films, with some important differences between samples prepared by drop casting and spin coating. A detailed study was performed to unravel the intimate structure-property relationship, involving computational analysis, different microscopy techniques and synchrotron radiation Mueller matrix polarimetry imaging (SR-MMPi) investigation. Through SR-MMPi, exploiting the highly collimated synchrotron radiation (SR) light of Diamond Light Source B23 beamline, we determined the size of the linear contributions responsible for the strong non-reciprocal features, and how they manifest in the various 2D chiral meso-domains.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
- Diamond Light Source, Ltd, Chilton, Didcot OX11 0DE, UK
| | - Tamás Jávorfi
- Diamond Light Source, Ltd, Chilton, Didcot OX11 0DE, UK
| | | | - Gianluca M Farinola
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via Edoardo Orabona 4, 70126 Bari, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| | - Angela Punzi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via Edoardo Orabona 4, 70126 Bari, Italy
| | | | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Han X, Ran G, Lu H, Sun S. The exciton dynamics and charge transfer in polymers with the effects of chlorine substituents. Phys Chem Chem Phys 2024; 26:25098-25104. [PMID: 39308362 DOI: 10.1039/d4cp02642j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Donor-acceptor (D-A) type conjugated polymers, particularly those with electron-withdrawing halogen substituents, have demonstrated high efficiency as donor materials in solar energy conversion. In our previous work, we have successfully synthesized three low-cost D-A type conjugated polymers (designated as PJ-1, PJ-2, and PJ-3) through a gradual chlorination process, of which, devices based on PJ-1 exhibited exceptional power conversion efficiency (15.01%) and figure-of-merit values (45.48). In this study, we further investigated the excited-state dynamics of the three donor polymers by transient absorption spectroscopy to explore the dynamic reasons behind the high power conversion efficiency of PJ-1. Our findings revealed that PJ-1 exhibited pronounced aggregation, which facilitated intermolecular interactions, thereby enhancing charge transport capability and suppressing trap-assisted recombination. Furthermore, the PJ-1-based heterojunction presented efficient exciton dissociation and enhanced hole transfer efficiency. These results underscore the potential of chlorine substitution in improving exciton dissociation and charge transfer via regulating aggregation behavior and energy level, offering a straightforward and effective approach to engineer high-performance conjugated polymer donor materials for photovoltaic applications.
Collapse
Affiliation(s)
- Xu Han
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Guangliu Ran
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Shumei Sun
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Zangoli M, Monti F, Zanelli A, Marinelli M, Flammini S, Spallacci N, Zakrzewska A, Lanzi M, Salatelli E, Pierini F, Di Maria F. Multifunctional Photoelectroactive Materials for Optoelectronic Applications Based on Thieno[3,4-b]pyrazines and Thieno[1,2,5]thiadiazoles. Chemistry 2024; 30:e202303590. [PMID: 37983681 DOI: 10.1002/chem.202303590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
In this study, we introduce a novel family of symmetrical thiophene-based small molecules with a Donor-Acceptor-Donor structure. These compounds feature three different acceptor units: benzo[c][1,2,5]thiadiazole (Bz), thieno[3,4-b]pyrazine (Pz), and thieno[1,2,5]thiadiazole (Tz), coupled with electron donor units based on a carbazole-thiophene derivative. Using Density Functional Theory (DFT), we investigate how the molecular geometry and strength of the central acceptor unit impact the redox and spectroscopic properties. Notably, the incorporation of Pz and Tz moieties induces a significant redshift in the absorption and emission spectra, which extend into the near-infrared (NIR) region, simultaneously reducing their energy gaps (~1.4-1.6 eV). This shift is attributed to the increased coplanarity of the oligomeric inner core, both in the ground (S0 ) and excited (S1 ) states, due to the enhanced quinoidal character as supported by bond-length alternation (BLA) analysis. These structural changes promote better π-electron delocalization and facilitate photoinduced charge transfer processes in optoelectronic devices. Notably, we show that Pz- and Tz-containing molecules exhibit NIR electrochromic behavior and present ambivalent character in bulk heterojunction (BHJ) solar cells. Finally, theoretical calculations suggest that these molecules could serve as effective two-photon absorption (2PA) probes, further expanding their potential in optoelectronic applications.
Collapse
Affiliation(s)
- Mattia Zangoli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, 40129, Bologna, Italy
| | - Filippo Monti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Alberto Zanelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Martina Marinelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Soraia Flammini
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- RCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Nicol Spallacci
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106, Warsaw, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106, Warsaw, Poland
| | - Francesca Di Maria
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, 40129, Bologna, Italy
| |
Collapse
|
4
|
Costello A, Duke R, Sorensen S, Kothalawala NL, Ogbaje M, Sarkar N, Kim DY, Risko C, Parkin SR, Huckaba AJ. Hydrogen-Bonding Trends in a Bithiophene with 3- and/or 4-Pyridyl Substituents. ACS OMEGA 2023; 8:24485-24494. [PMID: 37457451 PMCID: PMC10339323 DOI: 10.1021/acsomega.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
To improve the charge-carrier transport capabilities of thin-film organic materials, the intermolecular electronic couplings in the material should be maximized. Decreasing intermolecular distance while maintaining proper orbital overlap in highly conjugated aromatic molecules has so far been a successful way to increase electronic coupling. We attempted to decrease the intermolecular distance in this study by synthesizing cocrystals of simple benzoic acid coformers and dipyridyl-2,2'-bithiophene molecules to understand how the coformer identity and pyridine N atom placement affected solid-state properties. We found that with the 5-(3-pyridyl)-5'-(4-pyridyl)-isomer, the 4-pyridyl ring interacted with electrophiles and protons more strongly. Synthesized cocrystal powders were found to have reduced average crystallite size in reference to the parent compounds. The opposite was found for the intermolecular electronic couplings, as determined via density functional theory (DFT) calculations, which were relatively large in some of the cocrystals.
Collapse
Affiliation(s)
- Alison
M. Costello
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Rebekah Duke
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Center
for Applied Energy Research, University
of Kentucky, Lexington, Kentucky 40511, United States
| | - Stephanie Sorensen
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | | | - Moses Ogbaje
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Center
for Applied Energy Research, University
of Kentucky, Lexington, Kentucky 40511, United States
| | - Nandini Sarkar
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Doo Young Kim
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chad Risko
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Center
for Applied Energy Research, University
of Kentucky, Lexington, Kentucky 40511, United States
| | - Sean R. Parkin
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Aron J. Huckaba
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
5
|
Kihal N, Nazemi A, Bourgault S. Supramolecular Nanostructures Based on Perylene Diimide Bioconjugates: From Self-Assembly to Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1223. [PMID: 35407341 PMCID: PMC9000806 DOI: 10.3390/nano12071223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022]
Abstract
Self-assembling π-conjugated systems constitute efficient building blocks for the construction of supramolecular structures with tailored functional properties. In this context, perylene diimide (PDI) has attracted attention owing to its chemical robustness, thermal and photo-stability, and outstanding optical and electronic properties. Recently, the conjugation of PDI derivatives to biological molecules, including oligonucleotides and peptides, has opened new avenues for the design of nanoassemblies with unique structures and functionalities. In the present review, we offer a comprehensive summary of supramolecular bio-assemblies based on PDI. After briefly presenting the physicochemical, structural, and optical properties of PDI derivatives, we discuss the synthesis, self-assembly, and applications of PDI bioconjugates.
Collapse
Affiliation(s)
- Nadjib Kihal
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Centre Québécois sur les Matériaux Fonctionnels/Québec Centre for Advanced Materials, CQMF/QCAM, Montreal, QC H3A 2A7, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec, Montreal, QC H2X 2J6, Canada;
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|