1
|
Kulkarni H, Gaikwad AB. The mitochondria-gut microbiota crosstalk - A novel frontier in cardiovascular diseases. Eur J Pharmacol 2025; 998:177562. [PMID: 40157703 DOI: 10.1016/j.ejphar.2025.177562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Cardiovascular diseases (CVDs), including hypertension, atherosclerosis, and cardiomyopathy among others, remain the leading cause of global morbidity and mortality. Despite advances in treatment, the complex pathophysiology of CVDs necessitates innovative approaches to improve patient outcomes. Recent research has uncovered a dynamic interplay between mitochondria and gut microbiota, fundamentally altering our understanding of cardiovascular health. However, while existing studies have primarily focused on individual components of this axis, this review examines the bidirectional communication between these biological systems and their collective impact on cardiovascular health. Mitochondria, serving as cellular powerhouses, are crucial for maintaining cardiovascular homeostasis through oxidative phosphorylation (OXPHOS), calcium regulation, and redox balance. Simultaneously, the gut microbiota influences cardiovascular function through metabolite production, barrier integrity maintenance, and immune system modulation. The mitochondria-gut microbiota axis operates through various molecular mechanisms, including microbial metabolites such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFA), and secondary bile acids, which directly influence mitochondrial function. Conversely, mitochondrial stress signals and damage-associated molecular patterns (DAMPs) affect gut microbial communities and barrier function. Key signalling pathways, including AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and the silent information regulator 1-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (SIRT1-PGC-1α) axis, integrate these interactions, highlighting their role in CVD pathogenesis. Understanding these interactions has revealed promising therapeutic targets, suggesting new therapies aimed at both mitochondrial function and gut microbiota composition. Thus, this review provides a comprehensive framework for leveraging the mitochondria-gut microbiota axis in providing newer therapeutics for CVDs by targeting the AMPK/SIRT-1/PGC-1α/NF-κB signalling.
Collapse
Affiliation(s)
- Hrushikesh Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan 333031, India.
| |
Collapse
|
2
|
Zhang L, Chen H, Bu X, Ju Z, Xu T, Zhang Y, Zhong C. Plasma succinate and the risks of cardiovascular events and recurrent stroke after ischemic stroke: A nested case-control study. Chin Med J (Engl) 2025:00029330-990000000-01567. [PMID: 40419441 DOI: 10.1097/cm9.0000000000003632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Indexed: 05/28/2025] Open
Affiliation(s)
- Leping Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongyu Chen
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao, Tongliao, Inner Mongolia 028000, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Sun P, Liu J, Chen G, Guo Y. The Role of G Protein-Coupled Receptors in the Regulation of Orthopaedic Diseases by Gut Microbiota. Nutrients 2025; 17:1702. [PMID: 40431441 PMCID: PMC12114226 DOI: 10.3390/nu17101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Exercise and diet modulate the gut microbiota, which is involved in the regulation of orthopaedic diseases and synthesises a wide range of metabolites that modulate cellular function and play an important role in bone development, remodelling and disease. G protein-coupled receptors (GPCRs), the largest family of transmembrane receptors in the human body, interact with gut microbial metabolites to regulate relevant pathological processes. This paper provides a review of different dietary and exercise effects on the pathogenic gut microbiota and their metabolites associated with GPCRs in orthopaedic diseases. RESULTS: Generally, metabolites produced by gut microbiota contribute to the maintenance of bone health by activating the corresponding GPCRs, which are involved in bone metabolism, regulation of immune response, and maintenance of gut flora homeostasis. Exercise and diet can influence gut microbiota, and an imbalance in gut microbiota homeostasis can trigger a series of adverse immune and metabolic responses by affecting GPCR function, ultimately leading to the onset and progression of various orthopaedic diseases. Understanding these relationships is crucial for elucidating the pathogenesis of orthopaedic diseases and developing personalised probiotic-based therapeutic strategies. In the future, we should further explore how to prevent and treat orthopaedic diseases through GPCR-based modulation of gut microbes and their interactions. The development of substances that precisely modulate gut microbes through different exercises and diets will provide more effective interventions to improve bone health in patients.
Collapse
Affiliation(s)
- Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Jinchao Liu
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Guannan Chen
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yilan Guo
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Wang C, Yu X, Yu X, Xiao H, Song Y, Wang X, Zheng H, Chen K, An Y, Zhou Z, Guo X, Wang F. Gut flora-derived succinate exacerbates Allergic Airway Inflammation by promoting protein succinylation. Redox Biol 2025; 82:103623. [PMID: 40174477 PMCID: PMC11999320 DOI: 10.1016/j.redox.2025.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Allergic airway inflammation (AAI) is a prevalent respiratory disorder that affects a vast number of individuals globally. There exists a complex interplay among inflammation, immune responses, and metabolic processes, which is of paramount importance in the pathogenesis of AAI. Metabolic dysregulation and protein translational modification (PTM) are well-recognized hallmarks of diseases, playing pivotal roles in the onset and progression of numerous ailments. However, the role of gut microbiota metabolites in the development of AAI, as well as their influence on PTM modifications within this disease context, have not been thoroughly explored and investigated thus far. In AAI patients, succinate was identified as a key metabolite, positively correlated with certain immune parameters and IgE levels, and having good diagnostic value. In AAI mice, gut bacteria were the main source of high succinate levels. Mendelian randomization showed succinate as a risk factor for asthma. Exogenous succinate worsened AAI in mice, increasing airway resistance and inflammatory factor levels. Protein succinylation in AAI mice lungs differed significantly from normal mice, with up-regulated proteins in metabolic pathways. FMT alleviated AAI symptoms by reducing succinate and protein succinylation levels. In vitro, succinate promoted protein succinylation in BEAS-2B cells, and SOD2 was identified as a key succinylated protein, with the K68 site crucial for its modification and enzyme activity regulation. Gut flora-derived succinate exacerbates AAI in mice by increasing lung protein succinylation, and FMT can reverse this. These findings offer new insights into AAI mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education of China, China
| | - Xin Yu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Hui Xiao
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yuemeng Song
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xinlei Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kai Chen
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China
| | - Xiaoping Guo
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; The Medical Basic Research Innovation Center of Airway Disease in North China, Ministry of Education of China, China; JLU-USYD Joint Research Center for Respiratory Diseases, China; Jilin Provincial International Cooperation Key Laboratory of Pathogen Biology, China.
| |
Collapse
|
5
|
Qian N, Jin J, Gao Y, Liu J, Wang Y. Sex Differences in Atrial Fibrillation: Evidence from Circulating Metabolites. Metabolites 2025; 15:170. [PMID: 40137135 PMCID: PMC11943541 DOI: 10.3390/metabo15030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Significant sex differences exist in atrial fibrillation (AF). Better understanding of its underlying mechanism would help AF management. This study aimed to investigate the contribution of circulating metabolites to sex differences in AF and the association between them. Methods: A total of 108 patients with AF were enrolled. Untargeted metabolomics were performed in plasma samples of male and female patients. Correlation analysis with clinical characteristics and Mendelian randomization were used to identify sex-specific metabolites associated with AF, which was further validated in additional patients. Transcriptomics data of the left atrium were used to investigate the molecular alteration of the left atrium responding to identified sex-specific circulating metabolites. The effect of selected sex-specific metabolites on cardiomyocytes was further investigated. Results: A total of 60 annotated metabolites were found with different levels between male and female patients. Among these sex-specific metabolites, three metabolites, 7-Methylguanosine, succinic acid, and N-Undecylbenzenesulfonic acid, were positively related to the left atrial remodeling. Additionally, succinic acid was significantly associated with increased risk of AF (OR = 1.26; 95% CI: 1.13 to 1.40; p < 0.001). And, SUCLA2, the gene of succinic acid metabolism, was significantly increased in the left atrium of male patients (fold change = 1.53; p = 0.008). Treatment with succinic acid led to cardiomyocyte hypertrophy and mitochondrial dysfunction. Conclusions: This study highlights sex differences in circulating metabolites in patients with AF and identifies the associations between sex-specific metabolites and AF. succinic acid, which is much higher in male patients, contributes to the process of AF.
Collapse
Affiliation(s)
- Ningjing Qian
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Junyan Jin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Jiayi Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
6
|
Rohun J, Dudzik D, Raczak-Gutknecht J, Wabich E, Młodziński K, Markuszewski MJ, Daniłowicz-Szymanowicz L. Metabolomics in Atrial Fibrillation: Unlocking Novel Biomarkers and Pathways for Diagnosis, Prognosis, and Personalized Treatment. J Clin Med 2024; 14:34. [PMID: 39797116 PMCID: PMC11722095 DOI: 10.3390/jcm14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Atrial fibrillation (AF) is the most frequent arrhythmia in the adult population associated with a high rate of severe consequences leading to significant morbidity and mortality worldwide. Therefore, its prompt recognition is of high clinical importance. AF detection often remains challenging due to unspecific symptoms and a lack of reliable biomarkers for its prediction. Herein, novel bioanalytical methodologies, such as metabolomics, offer new opportunities for a better understanding of the underlying pathological mechanisms of cardiovascular diseases, including AF. The metabolome, considered a complete set of small molecules present in the organism, directly reflects the current phenotype of the studied system and is highly sensitive to any changes, including arrhythmia's onset. A growing body of evidence suggests that metabolite profiling has prognostic value in AF prediction, highlighting its potential role not only in early diagnosis but also in guiding therapeutic interventions. By identifying specific metabolites as a disease biomarker or recognising particular metabolomic pathways involved in the AF pathomechanisms, metabolomics could be of great clinical value for further clinical decision-making, risk stratification, and an individual personalised approach. The presented narrative review aims to summarise the current state of knowledge on metabolomics in AF with a special emphasis on its implications for clinical practice and personalised medicine.
Collapse
Affiliation(s)
- Justyna Rohun
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (D.D.); (J.R.-G.); (M.J.M.)
| | - Joanna Raczak-Gutknecht
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (D.D.); (J.R.-G.); (M.J.M.)
| | - Elżbieta Wabich
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| | - Krzysztof Młodziński
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| | - Michał J. Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland; (D.D.); (J.R.-G.); (M.J.M.)
| | - Ludmiła Daniłowicz-Szymanowicz
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdańsk, Poland; (J.R.); (E.W.); (K.M.)
| |
Collapse
|
7
|
Duan Y, Dai J, Lu Y, Qiao H, Liu N. Disentangling the molecular mystery of tumour-microbiota interactions: Microbial metabolites. Clin Transl Med 2024; 14:e70093. [PMID: 39568157 PMCID: PMC11578933 DOI: 10.1002/ctm2.70093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
The profound impact of the microbiota on the initiation and progression of cancer has been a focus of attention. In recent years, many studies have shown that microbial metabolites serve as key hubs that connect the microbiome and cancer progression, but the underlying molecular mechanisms have not been fully elucidated. Multiple mechanisms that influence tumour development and therapy resistance, including disrupting cellular signalling pathways, triggering oxidative stress, inducing metabolic reprogramming and reshaping tumour immune microenvironment, are reviewed. Focusing on recent advancements in this field, this review also summarises the methodological framework of studies regarding microbial metabolites. In this review, we outline the current state of research on tumour-associated microbial metabolites and describe the challenges in future scientific research and clinical applications. KEY POINTS: Metabolites derived from both gut and intratumoural microbiota play important roles in cancer initiation and progression. The dual roles of microbial metabolites pose an obstacle for clinical translations. Absolute quantification and tracing techniques of microbial metabolites are essential for addressing the gaps in studies on microbial metabolites. Integrating microbial metabolomics with multi-omics transcends current research paradigms.
Collapse
Affiliation(s)
- Yu‐Fei Duan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Jia‐Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Ying‐Qi Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouPR China
| |
Collapse
|
8
|
Zhang H, Wang J, Shen J, Chen S, Yuan H, Zhang X, Liu X, Yu Y, Li X, Gao Z, Wang Y, Wang J, Song M. Prophylactic supplementation with Bifidobacterium infantis or its metabolite inosine attenuates cardiac ischemia/reperfusion injury. IMETA 2024; 3:e220. [PMID: 39135700 PMCID: PMC11316933 DOI: 10.1002/imt2.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/15/2024]
Abstract
Emerging evidence has demonstrated the profound impact of the gut microbiome on cardiovascular diseases through the production of diverse metabolites. Using an animal model of myocardial ischemia-reperfusion (I/R) injury, we found that the prophylactic administration of a well-known probiotic, Bifidobacterium infantis (B. infantis), exhibited cardioprotective effects in terms of preserving cardiac contractile function and preventing adverse cardiac remodeling following I/R and that these cardioprotective effects were recapitulated by its metabolite inosine. Transcriptomic analysis further revealed that inosine mitigated I/R-induced cardiac inflammation and cell death. Mechanistic investigations elucidated that inosine suppressed the production of pro-inflammatory cytokines and reduced the numbers of dendritic cells and natural killer cells, achieved through the activation of the adenosine A2A receptor (A2AR) that when inhibited abrogated the cardioprotective effects of inosine. Additionally, in vitro studies using C2C12 myoblasts revealed that inosine attenuated cell death by serving as an alternative carbon source for adenosine triphosphate (ATP) generation through the purine salvage pathway when subjected to oxygen-glucose deprivation/reoxygenation that simulated myocardial I/R injury. Likewise, inosine reversed the I/R-induced decrease in ATP levels in mouse hearts. Taken together, our findings indicate that B. infantis or its metabolite inosine exerts cardioprotective effects against I/R by suppressing cardiac inflammation and attenuating cardiac cell death, suggesting prophylactic therapeutic options for acute ischemic cardiac injury.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiawan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Department of AnesthesiologyBeijing Chao‐Yang HospitalBeijingChina
| | - Jianghua Shen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Siqi Chen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Hailong Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifengChina
| | - Xuan Zhang
- University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xu Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ying Yu
- University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xinran Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Zeyu Gao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug EngineeringHenan UniversityKaifengChina
| | - Jun Wang
- University of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Liu Y, Huang Y, He Q, Dou Z, Zeng M, Wang X, Li S. From heart to gut: Exploring the gut microbiome in congenital heart disease. IMETA 2023; 2:e144. [PMID: 38868221 PMCID: PMC10989834 DOI: 10.1002/imt2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 06/14/2024]
Abstract
Congenital heart disease (CHD) is a prevalent birth defect and a significant contributor to childhood mortality. The major characteristics of CHD include cardiovascular malformations and hemodynamical disorders. However, the impact of CHD extends beyond the circulatory system. Evidence has identified dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and inflammation associated with CHD affect the gut microbiome, leading to alterations in its number, abundance, and composition. The gut microbiome, aside from providing essential nutrients, engages in direct interactions with the host immune system and indirect interactions via metabolites. The abnormal gut microbiome or its products can translocate into the bloodstream through an impaired gut barrier, leading to an inflammatory state. Metabolites of the gut microbiome, such as short-chain fatty acids and trimethylamine N-oxide, also play important roles in the development, treatment, and prognosis of CHD. This review discusses the role of the gut microbiome in immunity, gut barrier, neurodevelopment, and perioperative period in CHD. By fostering a better understanding of the cross-talk between CHD and the gut microbiome, this review aims to contribute to improve clinical management and outcomes for CHD patients.
Collapse
Affiliation(s)
- Yuze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuan Huang
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zheng Dou
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shoujun Li
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|