1
|
Bai M, Jin Y, Jin Z, Xie Y, Chen J, Zhong Q, Wang Z, Zhang Q, Cai Y, Qun F, Yuki N, Xin C, Shen X, Zhu J. Distinct immunophenotypic profiles and neutrophil heterogeneity in colorectal cancer. Cancer Lett 2025; 616:217570. [PMID: 39993650 DOI: 10.1016/j.canlet.2025.217570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Colorectal cancer (CRC) exhibits significant molecular and immunological heterogeneity. Neutrophil infiltration patterns play a crucial yet poorly understood role in tumor progression and patient outcomes. This study presents a comprehensive single-cell atlas of the CRC tumor microenvironment (TME), integrating transcriptomic data from 388,511 cells across 98 samples from 63 patients. Employing advanced computational methods, we stratified patients based on their immune cell infiltration profiles, revealing distinct immunophenotypes with potential therapeutic implications. Our analysis focused on tissue-resident neutrophils (TRNs) and uncovered previously uncharacterized subpopulations with diverse functional states. Trajectory inference analysis revealed a dynamic differentiation path from normal-associated neutrophils to tumor-associated neutrophils, highlighting the remarkable plasticity of these cells within the tumor environment. By integrating single-cell data with bulk transcriptomic and clinical information, we identified specific neutrophil-derived gene signatures associated with poor prognosis in CRC, suggesting their potential as novel prognostic biomarkers. This study not only provides unprecedented insights into neutrophil heterogeneity in CRC but also identifies potential targets for immunomodulatory therapies. Our findings lay the groundwork for developing more nuanced, personalized immunotherapeutic strategies for CRC, potentially improving treatment efficacy for patients who currently show a limited response to existing immunotherapies.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China
| | - Zihao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Jinggang Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Qingping Zhong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China
| | | | - Qian Zhang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yibo Cai
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - FangYa Qun
- National Institutes for Quantum Science and Technology(QST), Chiba, Japan
| | - Nitta Yuki
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Cheng Xin
- Department of Colorectal Surgery, Changhai Hospital, Naval Mdical University, Shanghai, China.
| | - Xiaohui Shen
- Department of General Surgery, Department of General Practice, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Zhang W, Huang X. Targeting cGAS-STING pathway for reprogramming tumor-associated macrophages to enhance anti-tumor immunotherapy. Biomark Res 2025; 13:43. [PMID: 40075527 PMCID: PMC11905658 DOI: 10.1186/s40364-025-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator interferon genes (STING) signaling pathway plays a crucial role in activating innate and specific immunity in anti-tumor immunotherapy. As the major infiltrating cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) could be polarized into either anti-tumor M1 or pro-tumor M2 types based on various stimuli. Accordingly, targeted reprogramming TAMs to restore immune balance shows promise as an effective anti-tumor strategy. In this review, we aim to target cGAS-STING pathway for reprogramming TAMs to enhance anti-tumor immunotherapy. We investigated the double-edged sword effects of cGAS-STING in regulating TME. The regulative roles of cGAS-STING pathway in TAMs and its impact on the TME were further revealed. More importantly, several strategies of targeting cGAS-STING for reprogramming TAMs were designed for enhancing anti-tumor immunotherapy. Taken together, targeting cGAS-STING pathway for reprogramming TAMs in TME might be a promising strategy to enhance anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Zhang S, Yu H, Sun S, Fan X, Bi W, Li S, Wang W, Fang Z, Chen X. Copper Homeostasis Based on Cuproptosis-Related Signature Optimizes Molecular Subtyping and Treatment of Glioma. Mol Neurobiol 2024; 61:4962-4975. [PMID: 38151613 DOI: 10.1007/s12035-023-03893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Copper is essential in living organisms and crucial to various physiological processes. Normal physiological conditions are in a state of copper homeostasis to ensure normal biochemical and metabolic processes. Dysregulation of copper homeostasis has been associated with multiple diseases, especially cancer. Cuproptosis is a copper-dependent cell death mediated by excess copper or homeostasis dysregulation. Elesclomol is a common inducer of cuproptosis, carrying copper into the cell and producing excess copper. Cuproptosis modulates tumor proliferation-related signaling pathways and is closely associated with remodeling the tumor microenvironment. In gliomas, the role of cuproptosis and copper homeostasis needs to be better characterized. This study systematically analyzed cuproptosis-related genes (CRGs) and constructed a cuproptosis signature for gliomas. The signature closely links the subtypes and clinical features of glioma patients. The results showed a greater tendency toward dysregulation of copper homeostasis as the malignant grade of glioma patients increased. In addition, CRGs-signature effectively predicted the sensitivity of glioma cells to elesclomol and verified that elesclomol inhibited glioma mainly through inducing cellular cuproptosis. In summary, we found different copper homeostatic features in gliomas and verified the anticancer mechanism of elesclomol, which provides a theoretical basis for developing novel therapeutic strategies for gliomas.
Collapse
Affiliation(s)
- Siyu Zhang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Huihan Yu
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Suling Sun
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Xiaoqing Fan
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), No. 17, Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Wenxu Bi
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Shuyang Li
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Wei Wang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiyou Fang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.
| | - Xueran Chen
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
- Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.
| |
Collapse
|
4
|
Li Z, Li L, Yue M, Peng Q, Pu X, Zhou Y. Tracing Immunological Interaction in Trimethylamine N-Oxide Hydrogel-Derived Zwitterionic Microenvironment During Promoted Diabetic Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402738. [PMID: 38885961 DOI: 10.1002/adma.202402738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The diabetic wound healing is challenging due to the sabotaged delicate balance of immune regulation via an undetermined pathophysiological mechanism, so it is crucial to decipher multicellular signatures underlying diabetic wound healing and seek therapeutic strategies. Here, this work develops a strategy using novel trimethylamine N-oxide (TMAO)-derived zwitterionic hydrogel to promote diabetic wound healing, and explore the multi-cellular ecosystem around zwitterionic hydrogel, mapping out an overview of different cells in the zwitterionic microenvironment by single-cell RNA sequencing. The diverse cellular heterogeneity is revealed, highlighting the critical role of macrophage and neutrophils in managing diabetic wound healing. It is found that polyzwitterionic hydrogel can upregulate Ccl3+ macrophages and downregulate S100a9+ neutrophils and facilitate their interactions compared with polyanionic and polycationic hydrogels, validating the underlying effect of zwitterionic microenvironment on the activation of adaptive immune system. Moreover, zwitterionic hydrogel inhibits the formation of neutrophil extracellular traps (NETs) and promotes angiogenesis, thus improving diabetic wound healing. These findings expand the horizons of the sophisticated orchestration of immune systems in zwitterion-directed diabetic wound repair and uncover new strategies of novel immunoregulatory biomaterials.
Collapse
Affiliation(s)
- Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Longwei Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Qingyu Peng
- School of Mechanical and Material Engineering, North China University of Technology, Beijing, 100144, P. R. China
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|