1
|
Xu P, Hong C, Liu L, Xiao L. PD-1/PD-L1 blockade therapy in hepatocellular carcinoma: Current status and potential biomarkers. Biochim Biophys Acta Rev Cancer 2025; 1880:189334. [PMID: 40280499 DOI: 10.1016/j.bbcan.2025.189334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death and the sixth most prevalent cancer worldwide. However, most patients with HCC are at an advanced stage at the time of clinical diagnosis, making surgery impossible. In the past, targeted therapeutic drugs such as sorafenib and lenvatinib were the main treatments. With recent breakthroughs in medicine, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has garnered interest and has been extensively studied for clinical treatment. In addition to single-agent therapies, combination regimens involving ICIs have also been developed. Despite this progress, not all patients with HCC benefit from immunotherapy. Therefore, to improve the treatment response rates, it is crucial to identify patients with HCC who are suitable for immunotherapy. The exploration and validation of markers to predict the outcomes of immunotherapeutic treatments in patients with HCC are of clinical importance. In this article, we provide a comprehensive review of research progress in immunotherapy, particularly ICIs and combination therapies, for HCC. Furthermore, we summarize the clinical indicators and tumor markers discovered in recent years to forecast immunotherapy outcomes in patients with HCC. We also outline predictive markers for the occurrence of immune-related adverse events in patients with HCC receiving immunotherapy and discuss future research directions in the immunotherapeutic treatment landscape.
Collapse
Affiliation(s)
- Peishuang Xu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chang Hong
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lushan Xiao
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Huang A, Ma J, Zhu H, Qi Y, Jin Y, Zhang M, Yin L, Luo M, Chen S, Xie C, Huang H. Blood metabolites mediate causal inference studies on the effect of gut microbiota on the risk of vascular calcification. J Adv Res 2025:S2090-1232(25)00198-5. [PMID: 40139524 DOI: 10.1016/j.jare.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Emerging evidence indicates a notable connection between gut microbiota and Vascular Calcification (VC). Gut microbiota influences various disease processes through host metabolic pathways; however, the causative link between gut microbiota and VC, along with the potential mediating role of metabolites, is still not well understood. METHODS We leveraged data from the largest Genome-Wide Association Studies (GWAS) concerning gut microbiota, blood metabolites, and VC. To explore the causal relationships among these variables, we conducted two-sample bidirectional Mendelian Randomization (MR) analyses. Furthermore, mediation analyses were conducted to determine if metabolites act as an intermediary in the impact of gut microbiota on VC. In addition, we recruited CKD patients for mass spectrometry and CT examination, and performed a correlation analysis between the expression of blood metabolites and VC score. Finally, we experimentally validated the effects of intermediate metabolites on VC. RESULTS We identified 19 positive gut microbiota species and 52 positive blood metabolites with causal effects on VC. Additionally, the onset of VC was found to induce changes in the abundance of 24 gut microbiota species and 56 metabolites. Further analyses revealed that up to 13 positive gut microbiota species regulate the expression of 20 positive metabolites. Mediation analysis suggests that the gut microbiota g_KLE1615 promotes VC by downregulating the methionine-to-phosphate ratio. Mass spectrometry results indicate that over half of the metabolites identified through MR analysis show altered expression during CKD progression. Among them, 7 metabolites were significantly associated with the progression of VC. Further in vitro experiments confirmed the inhibitory effect of the intermediate metabolite methionine on VC. CONCLUSION Gut microbiota and blood metabolites are causally linked to VC. These findings provide a theoretical basis for microbiome- and metabolome-based therapeutic strategies for targeting VC and enhances our comprehension of the gut-vascular axis.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Jianshuai Ma
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Huijin Zhu
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Yanli Qi
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Jin
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Mingxuan Zhang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Li Yin
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Minhong Luo
- Department of Nephrology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Sifan Chen
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Chen Xie
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China.
| | - Hui Huang
- Department of Cardiology, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|